

University of Science and Technology of Mazandaran

# First determination of D\*-meson fragmentation functions and their uncertainties at next-to-next-to-leading order

Hamzeh Khanpour

University of Science and Technology of Mazandaran and IPM, IRAN

in collaboration with:

Maryam Soleymaninia and S. Mohammad Moosavi Nejad

## Outline

- Fragmentation functions (FFs)
- QCD factorization theorem
- Analysis strategy:
- The data sets
- Fit settings
- $\chi^2$  Minimizations and FFs uncertainties
- Numerical results for the global analysis of  $D^{*\pm}$  FFs
- Fit quality
- Summary and Conclusions

# Fragmentation functions

- Fragmentation functions describe the non-perturbative part of hard-scattering processes and along with the PDFs of initial hadrons (in hadron-hadron collision) and parton-level differential cross sections are three necessary ingredients to obtain theoretical predictions for hadroproduction cross sections.
- The process-independent FFs,  $D_i^H(z, \mu_F^2)$ , describe the probability for a parton *i* at the factorization scale  $\mu_F$  to fragment into a hadron *H* carrying away a fraction *z* of its momentum.
- The scaling violations of FFs are subject to the perturbatively computable DGLAP evolution equations.

• The optimal way to determine the  $D^{*\pm}$  FFs is to fit them to the experimental date extracted from the single-inclusive  $e^-e^+$  annihilation processes.



### QCD factorization theorem

• According to the factorization theorem, the differential cross section of process can be written as a convolutions of perturbatively calculable partonic cross sections with the FFs,



• For the  $D^{*\pm}$  production in annihilations, the factorization theorem reads

• The total cross section up to NNLO for  $e^+e^-$  annihilation into hadrons

$$\sigma_{\text{tot}} = \frac{4\pi\alpha^2(Q)}{Q^2} \left(\sum_i^{n_f} \tilde{e}_i^2(Q)\right) \\ \times \left(1 + \alpha_s K_{\text{QCD}}^{(1)} + \alpha_s^2 K_{\text{QCD}}^{(2)} + \cdots\right)$$

### APFEL

- APFEL is a public PDF evolution library with QED corrections.
- APFEL evolution features:
- Up to NNLO in QCD and LO in QED.
- The time-like evolution for fragmentation functions in x-space.
- FFNS and VFNS solution in *x*-space.
- The DIS module: Computation of DIS observables, Up to order  $\alpha_s^2$  (when possible), Heavy quark schemes: FONLL, FFNS and ZM-VFNS.



http://apfel.hepforge.org

# Available $D^{*\pm}$ FFs analysis

 SKM18: Maryam Soleymaninia, Hamzeh Khanpour, S. Mohammad Moosavi Nejad, First determination of D<sup>\*±</sup>-meson fragmentation functions and their uncertainties at next-to-next-to-leading order, Phys. Rev. D 97 (2018) no.7, 074014.

#### SIA data sets (ALEPH and OPAL), ZM-VFNS, NLO and NNLO accuracy

AKSRV17: Daniele P. Anderle, Tom Kaufmann, Marco Stratmann, Felix Ringer, Ivan Vitev, Using hadron-in-jet data in a global analysis of D\* fragmentation functions, Phys.Rev. D96 (2017) no.3, 034028.

SIA data sets + hadron-hadron + jet fragmentaion in pp scattering, ZM-VFNS, NLO accuracy

• KKKS08: T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Charmed-meson fragmentation functions with finite-mass corrections, Nucl.Phys. B799 (2008) 34-59.

#### SIA data sets (ALEPH, OPAL, CLEO and Belle), GM-VFNS, NLO accuracy

#### Analysis strategy and results

Phys. Rev. D **97**, no. 7, 074014 (2018) arXiv:1711.11344 [hep-ph]]

#### The data sets

- Most of experimental data for  $D^{*\pm}$  in  $e^+e^-$ -annihilation is reported by ALEPH, OPAL, CLEO and Belle Collaborations.
- We use the *c*-tagged and *b*-tagged SIA cross sections from ALEPH and OPAL Collaborations. A

| LEPH: Eur. Phys. J. C 16, 597 (2000). | OPAL: Eur. Phys. J. C 1, 439 (1998). |
|---------------------------------------|--------------------------------------|
|---------------------------------------|--------------------------------------|

| Collaboration    | Data properties  | $\sqrt{s}$ GeV | Data<br>points | ${\cal N}_i$ | $\chi^2$ (NLO) | Collaboration    | Data<br>properties | $\sqrt{s}$ GeV | Data<br>points | $\mathcal{N}_{i}$ | $\chi^2(NNLO)$ |
|------------------|------------------|----------------|----------------|--------------|----------------|------------------|--------------------|----------------|----------------|-------------------|----------------|
| ALEPH            | Inclusive        | 91.2           | 17             | 0.999 006    | 24.59          | ALEPH            | Inclusive          | 91.2           | 17             | 0.998 900         | 24.51          |
|                  | <i>b</i> -tagged | 91.2           | 15             | 1.001 04     | 18.73          |                  | <i>b</i> -tagged   | 91.2           | 15             | 1.000 990         | 17.99          |
| OPAL             | Inclusive        | 91.2           | 9              | 0.999 305    | 2.02           | OPAL             | Inclusive          | 91.2           | 9              | 0.999 099         | 1.92           |
|                  | <i>b</i> -tagged | 91.2           | 9              | 0.999 672    | 8.01           |                  | <i>b</i> -tagged   | 91.2           | 9              | 0.999 700         | 7.61           |
|                  | c-tagged         | 91.2           | 9              | 1.002 758    | 17.39          |                  | c-tagged           | 91.2           | 9              | 1.002 699         | 16.94          |
| TOTAL:           |                  |                | 59             |              | 70.74          | TOTAL:           |                    |                | 59             |                   | 68.97          |
| $(\chi^2/d.o.f)$ |                  |                |                |              | 1.31           | $(\chi^2/d.o.f)$ |                    |                |                |                   | 1.27           |

# Fit settings

• We parametrize the *z* distributions of the  $c(\bar{c})$  and  $b(\bar{b})$  quark FFs at their starting scales  $\mu_0^2 = 18.5 \ GeV^2$  as,

$$D_i^{D^{*\pm}}(z,\mu_0^2) = N_i z^{-(1+\alpha_i^2)} (1-z)^{\beta_i} e^{-\alpha_i^2/z}$$

• The FFs of gluon and light quarks are set to zero, i.e.

$$D_i^{D^{*\pm}}(z,\mu_0^2) = 0, \qquad i = u, \bar{u}, d, \bar{d}, s, \bar{s}, g$$

• According to the parton structure of  $D^{*-}$ , the FFs of  $D^{*-}$  can be obtained as

$$D_q^{D^{*-}}(z,\mu^2) = D_{\bar{q}}^{D^{*+}}(z,\mu^2) \qquad D_g^{D^{*-}}(z,\mu^2) = D_g^{D^{*+}}(z,\mu^2)$$

# $\chi^2$ Minimizations and FFs uncertainties

• In our analysis, the total  $\chi^2$  is calculated in comparison with the experimental data for  $D^{*\pm}$  production in  $e^+e^-$  annihilation:

$$\chi_n^2(\{\eta_i\}) = \left(\frac{1 - \mathcal{N}_n}{\Delta \mathcal{N}_n}\right)^2 + \sum_{k=1}^{N_n^{\text{data}}} \left(\frac{(\mathcal{N}_n \mathcal{O}_k^{\text{data}} - T_k^{\text{theory}}(\{\eta_i\}))}{\mathcal{N}_n \delta D_k^{\text{data}}}\right)^2$$

• The *Hessian method* gives the uncertainties of a given observable O:

$$[\Delta \mathcal{O}_i]^2 = \Delta \chi^2 \sum_{j,k} \left( \frac{\partial \mathcal{O}_i(\eta)}{\partial \eta_j} \right)_{\hat{\eta}} C_{j,k} \left( \frac{\partial \mathcal{O}_i(\eta)}{\partial \eta_k} \right)_{\hat{\eta}}$$

• The Hessian matrix is accessible by running the CERN program library MINUIT F. James, Report No. CERN-D-506.

#### Numerical results for the global analysis of $D^{*\pm}$ FFs

|      | Flavor <i>i</i>     | $N_i$             | $\alpha_i$         | $\beta_i$         |  |  |  |  |  |  |  |
|------|---------------------|-------------------|--------------------|-------------------|--|--|--|--|--|--|--|
| NLO  | <i>c</i> , <i>c</i> | 67.031*           | $1.908 \pm 0.0194$ | $1.133\pm0.070$   |  |  |  |  |  |  |  |
|      | b, b                | $5.742 \pm 1.574$ | $0.994 \pm 0.0385$ | $3.249 \pm 0.279$ |  |  |  |  |  |  |  |
|      |                     |                   |                    |                   |  |  |  |  |  |  |  |
|      | Flavor <i>i</i>     | $N_i$             | $\alpha_i$         | $\beta_i$         |  |  |  |  |  |  |  |
| NNLO | $c, \bar{c}$        | 53.896*           | $1.854 \pm 0.0191$ | $1.170 \pm 0.069$ |  |  |  |  |  |  |  |
|      | <i>b</i> , <i>b</i> | $5.127 \pm 1.351$ | $0.967 \pm 0.0372$ | $3.248 \pm 0.274$ |  |  |  |  |  |  |  |
|      |                     |                   |                    |                   |  |  |  |  |  |  |  |

#### D\*-meson FFs at NLO and NNLO



SKM18 fragmentation densities and their uncertainties (shaded bands) are shown at the initial scale  $\mu_0^2 = 18.5 \ GeV^2$  for c and b both at NLO (solid lines) and NNLO (dashed lines).

#### Comparison with other QCD analyses



Fragmentation densities and their uncertainties (shaded bands) are shown  $\mu^2 = 100 \text{ GeV}^2$  for *c* and *b* both at NLO (solid lines) and NNLO (dashed lines). Our results are also compared with the KKKS08 (dot-dashed lines) and the AKSRV17 (short dashed lines) results at NLO.

D. P. Anderle, T. Kaufmann, M. Stratmann, F. Ringer, and I. Vitev, Phys. Rev. D 96, 034028 (2017). T. Kneesch, B. A. Kniehl, G. Kramer, and I. Schienbein, Nucl. Phys. B799, 34 (2008).



Fragmentation densities and their uncertainties (shaded bands) are shown  $\mu^2 = M_Z^2$  for *c* and *b* both at NLO (solid lines) and NNLO (dashed lines).



Fragmentation densities and their uncertainties (shaded bands) are shown  $\mu^2 = 100 \text{ GeV}^2$  and  $M_Z^2$  for the gluon densities both at NLO (solid lines) and NNLO (dashed lines).

# Fit quality



Our NLO (solid line) and NNLO (dashed line) results for the normalized total cross sections of  $D^{\pm}$ -production compared with the KKKS08 ones (dot-dashed line) at the scale  $Q = M_Z$ .



Our NLO (solid line) and NNLO (dashed line) results for the normalized charm-tagged cross sections of  $D^{\pm}$ -production compared with the KKKS08 ones (dot-dashed line) at the scale  $Q = M_Z$ .



Our NLO (solid line) and NNLO (dashed line) results for the normalized bottom-tagged cross sections of  $D^{*\pm}$ -production compared with the KKKS08 ones (dot-dashed line) at the scale  $Q = M_Z$ .

#### Uncertainties: NLO vs NNLO



The experimental uncertainties for the  $D^{\pm}$ -meson FFs and SIA cross sections are similar in size both for the NLO and NNLO approximations.

# Summary and Conclusion

- We have determined the non-perturbative FFs of partons into the  $D^{\pm}$ -meson at NLO perturbative QCD and, for the first time, at NNLO one from global analyses of single inclusive electron-positron annihilation.
- Our analyses are based on the ZM-VFN scheme in which all quarks are treated as massless partons.
- We applied all SIA experimental data as much as possible including most of the data from ALEPH and OPAL Collaborations.
- We considered the NNLO accuracy in our global fit using the public APFEL code.
- We found that the experimental uncertainties for the  $D^{\pm}$ -meson FFs and SIA cross sections are similar in size both for the NLO and NNLO approximations.

