Studying the structure of few-hadron states Raúl Briceño

On-going work...

Hansen (CERN)

Baroni (South Carolina)	
Wilson (Royal fellow / Trinity	y)
Ortega (W&M)	

[hep-lat] 28 Sep 2015

JLAB-T

Relativistic, model-independent, multichannel $2 \rightarrow 2$ transition amplitudes in a finite volume

Raúl A. Briceño^{1,*} and Maxwell T. Hansen^{2,†}

 ¹ Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
 ² Institut f
ür Kernphysik and Helmholz Institute Mainz, Johannes Gutenberg-Universit
ät Mainz, 55099 Mainz, Germany (Dated: September 30, 2015)

We derive formalism for determining $2 + \mathcal{J} \rightarrow 2$ infinite-volume transition amplitudes from finitevolume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of the ρ -meson form factor, in which the unstable nature of the ρ is rigorously accommodated.

PACS numbers: 13.40.Gp,14.40.-n,12.38.Gc,11.80.Jy Keywords: finite volume

I. INTRODUCTION

Theoretical predictions of hadron structure are entering a new era. The precise determination of form stable hadronic states is already well underway [1–4] and resonant form factor studies are not far behind the first lattice QCD (LQCD) calculations of resonant $\mathcal{J} \to \mathbf{2}$ and $\mathbf{1} + \mathcal{J} \to \mathbf{2}$ transition processes appear this year.¹ These studies considered $\gamma^* \to \pi\pi$ [5] and $\gamma^*\pi \to \pi\pi$ [6] transitions. In Ref. [6], the Hadron Collaboration determined the $\gamma^*\pi \to \pi\pi$ amplitude for a range of energies and for various virtualities of the photon. The resulting fit was analytically continued to the a pole, thereby giving a first principles determ

Amplitude analysis

Experiments

... perhaps there is a hierarchy [.e.g. $c_0 > c_1 > c_2 > c_3 > c_4$]

identification of states, production/decay mechanisms

Lattice QCD

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- a lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

Lattice QCD

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- a lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

On the structure of states

On the structure of states

Isoscalar 0⁺⁺ channel:

Unitarity using all orders perturbation theory:

non-perturbative kernel including all diagrams not shown...

"yep, the left hand cut is there"

Unitarity using all orders perturbation theory:

$$i\mathcal{M} = \mathbf{X} + \mathbf{X} +$$

$$\rho \equiv \frac{p}{8\pi E} \sim \sqrt{s - s_{th}}$$
 square root singularity.

Unitarity using all orders perturbation theory:

$$i\mathcal{M} = \mathbf{X} + \mathbf{X} + \mathbf{X} + \mathbf{X} + \cdots$$

Unitarity using all orders perturbation theory:

Two-particle in finite volume

Consider the finite-volume two-particle correlator (*E*~2*m*):

$$C_L^{2pt.}(P) = \underbrace{V} + \underbrace{V} + \underbrace{V} + \cdots$$

Two-particle in finite volume

Consider the finite-volume two-particle correlator (*E*~2*m*):

$$C_L^{2pt.}(P) = \underbrace{V} + \underbrace{V} + \underbrace{V} + \cdots$$

$$V = \frac{1}{L^3} \sum_{\mathbf{k}} \frac{iB^2}{(2\omega_k)^2} \frac{i}{E - 2\omega_k} + \text{"smooth"}$$

$$= (iB) \left(\left[\frac{1}{L^3} \sum_{\mathbf{k}} -\int \frac{d^3k}{(2\pi)^3} \right] \frac{1}{(2\omega_k)^2} \frac{i}{E - 2\omega_k + i\epsilon} \right) (iB) + i\epsilon \text{ integral}$$

$$\equiv [iB] iF [iB] + i\epsilon \text{ integral}$$

$$= V - \infty + i\epsilon$$

$$F \text{ replaces } \rho$$

Two-particle in finite volume

Consider the finite-volume two-particle correlator (*E*~2*m*):

$$C_L^{2pt.}(P) = \underbrace{V}_{V} + \underbrace{V}_{V-\infty} + \underbrace{V}_{V-\infty} + \underbrace{V}_{V-\infty} + \underbrace{V}_{V-\infty} + \underbrace{V}_{V-\infty} + \cdots$$

$$= "\text{smooth"} + A \frac{i}{F^{-1} + \mathcal{M}} B^{\dagger}$$

poles satisfy:
$$\det[F^{-1}(P,L) + \mathcal{M}(P)] = 0$$

♀ Lüscher (1986, 1991)

- Rummukainen & Gottlieb (1995)
- 🖗 Kim, Sachrajda, & Sharpe/Christ, Kim & Yamazaki (2005)

Feng, Li, & Liu (2004); Hansen & Sharpe / RB & Davoudi (2012)
 RB (2014)

$\pi\pi$ Spectrum - (I=1 channel)

$\pi\pi$ Spectrum - (I=1 channel)

ππ Spectrum - (I=1 channel)

Dudek, Edwards & Thomas (2012) Wilson, RB, Dudek, Edwards & Thomas (2015)

The ρ vs m_{π}

The ρ vs m_{π}

One-to-two transitions

Unitarity using all orders perturbation theory:

Watson's theorem

Same phase and analytic structure as the scattering amplitude

One-to-two in finite volume

Same as before...but with a current

 $C_L^{3pt.}$ VVVsame topologies that we considered before...

One-to-two in finite volume

Same as before...but with a current

Lellouch & Lüscher (2000)
Kim, Sachrajda, & Sharpe
Christ, Kim & Yamazaki (2005)
<li...
Hansen & Sharpe (2012)
RB, Hansen Walker-Loud (2014)

See RB & Hansen (2015)

After lots of massaging...

$$\left|\langle \mathbf{2} ig| \mathcal{J} ig| \mathbf{1}
ight
angle_L
ight| = \sqrt{\mathcal{A} \ \mathcal{R} \ \mathcal{A}}$$

Lellouch-Lüscher matrix:

$$\mathcal{R}(E_n, \mathbf{P}) \equiv \lim_{E \to E_n}$$

 $\left[\frac{(E-E_n)}{F^{-1}(P,L)+\mathcal{M}(P)}\right]$

$\pi\gamma^*$ -to- $\pi\pi$ amplitude

π -to- ϱ form factor

π -to- ρ form factor

form factor and the ρ meson photocoupling, and obtain $|G_{\rho\pi\gamma}| = 0.0802(32)(20)$.

Two-to-two scattering with current - (full amp.)

Kinematic divergences

$$i\mathcal{W}_{\mu_1\cdots\mu_n} = \mathbf{X}^{\mathbf{X}} + \cdots$$

Two-to-two scattering **with current** - (full amp.)

Kinematic divergences

$$i\mathcal{W}_{\mu_{1}\cdots\mu_{n}} = \mathbf{X}^{\underbrace{\mathbf{X}}} + \underbrace{\mathbf{X}}^{\underbrace{\mathbf{X}}} + \underbrace{\mathbf{X$$

Two-to-two scattering with current - (df amp.)

Divergence-free amplitude

$$i\mathcal{W}_{\mathrm{df};\mu_{1}\cdots\mu_{n}} = \mathbf{X} + \mathbf{X} +$$

New class of diagrams:

Two-to-two scattering with current

Divergence-free amplitude

$$i\mathcal{W}_{df;\mu_{1}\cdots\mu_{n}} = \mathbf{A} + \mathbf{A$$

Two-to-two scattering with current

Divergence-free amplitude

$$i\mathcal{W}_{\mathrm{df};\mu_{1}\cdots\mu_{n}} = \mathbf{A} + \mathbf{A} +$$

Same as before...but with a current

 $C^{3pt.}$ VVV \otimes

Same as before...but with a current

...everything is the same as before except for...

Same as before...but with a current

$$C_L^{3pt.} = \underbrace{\swarrow}_V + \underbrace{\swarrow}_V + \underbrace{\checkmark}_V + \underbrace{\checkmark}_V + \cdots$$

...everything is the same as before except for...

Same as before...but with a current

$$C_L^{3pt.} = \underbrace{\swarrow}_V + \underbrace{\swarrow}_V + \underbrace{\checkmark}_V + \underbrace{\checkmark}_V + \cdots$$

...everything is the same as before except for...

After lots of massaging...

$$\left| \langle 2|\mathcal{J}|2 \rangle \right|_{L}^{2} = \frac{1}{L^{6}} \operatorname{Tr} \left[\mathcal{R} \mathcal{W}_{L,\mathrm{df}} \mathcal{R} \mathcal{W}_{L,\mathrm{df}} \right]$$

Building block #1) Lellouch-Luscher matrices:

$$\mathcal{R}(E_n, \mathbf{P}) \equiv \lim_{E \to E_n} \left[\frac{(E - E_n)}{F^{-1}(P, L) + \mathcal{M}(P)} \right]$$

"EASY"

-derivatives of amplitudes and F-function at the finite-volume spectra

After lots of massaging...

$$\left| \langle 2|\mathcal{J}|2 \rangle \right|_{L}^{2} = \frac{1}{L^{6}} \operatorname{Tr} \left[\mathcal{R} \mathcal{W}_{L,\mathrm{df}} \mathcal{R} \mathcal{W}_{L,\mathrm{df}} \right]$$

Building block #2) stable particle form factor

After lots of massaging...

$$\left| \langle 2|\mathcal{J}|2 \rangle \right|_{L}^{2} = \frac{1}{L^{6}} \operatorname{Tr} \left[\mathcal{R} \mathcal{W}_{L,\mathrm{df}} \mathcal{R} \mathcal{W}_{L,\mathrm{df}} \right]$$

Building block #3) G-function

- Integral is complicated
- if $P_f = P_i$:
 - poles coincide...we found an analytic solution for the integral
- otherwise:
 - write the integral in terms of two integrals:
 - 4D, singular, covariant, dim-reg integral [semi-analytical]
 - 3D, smooth, evaluate numerically...

Take-home message

- bound states
- 🗳 resonance
- remove all finite-volume systematics

Take-home message

Much harder than 0-to-2 and 1-to-2 transitions...but we have removed all major obstacles!

