Conclusion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Standard Model Effective Field Theory and Lepton Flavour Violation

Giovanni Marco Pruna

Laboratori Nazionali di Frascati Frascati, Italia

Maynooth University, XIII QCHS, Ireland, 3 August 2018

Conclusion o

Charged Lepton flavour violation

Reaction	Present limit	C.L.	Experiment	Year	Reference
$\mu^+ \rightarrow e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016	[49]
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988	[50]
$\mu^- \text{Ti} \rightarrow e^- \text{Ti}^\dagger$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998	[51]
$\mu^- Pb \rightarrow e^- Pb^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996	[52]
$\mu^-Au \rightarrow e^-Au^+$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006	[54]
$\mu^- \text{Ti} \rightarrow e^+ \text{Ca}^{* \dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998	[53]
$\mu^+e^- \rightarrow \mu^-e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999	[55]
$\tau \rightarrow e\gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010	[56]
$\tau \rightarrow \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010	[56]
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010	[57]
$\tau \rightarrow \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010	[57]
$\tau \rightarrow \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007	[58]
$\tau \rightarrow \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007	[59]
$\tau \rightarrow \rho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011	[60]
$\tau \rightarrow \rho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011	[60]
$\pi^0 \rightarrow \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008	[61]
$K_L^0 \rightarrow \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998	[62]
$K_L^0 \rightarrow \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008	[61]
$K^+ \rightarrow \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005	[63]
$J/\psi \rightarrow \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013	[64]
$J/\psi \rightarrow \tau e$	$< 8.3 \times 10^{-6}$	90%	BESH	2004	[65]
$J/\psi \rightarrow \tau \mu$	$< 2.0 \times 10^{-6}$	90%	BESH	2004	[65]
$B^0 \rightarrow \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013	[68]
$B^0 \rightarrow \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008	[69]
$B^0 \rightarrow \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008	[69]
$B \rightarrow K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006	[66]
$B \rightarrow K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006	[66]
$B^+ \rightarrow K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012	[67]
$B^+ \rightarrow K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012	[67]
$B_s^0 \rightarrow \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013	[68]
$\Upsilon(1s) \rightarrow \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008	[70]
$Z \rightarrow \mu e$	$<7.5\times10^{-7}$	95%	LHC ATLAS	2014	[71]
$Z \rightarrow \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995	[72]
$Z \rightarrow \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997	[73]
$h \rightarrow e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016	[74]
$h \rightarrow \tau \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017	[75]
$h \rightarrow \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017	[75]

Testing LFV

LFV means BSM physics

No evidence so far

Many impressive limits

A consistent picture

Symmetries at work

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

LF is protected

From EW to EM

Conclusion o

Experimental "observations"

CURRENT TRENDS IN MUONIC LEPTON FLAVOUR VIOLATION

- BR($\mu \rightarrow 3e$)< 1.0 × 10⁻¹² at the 90% C.L. SINDRUM collaboration, Nucl. Phys. B **299** (1988) 1;
- $\sigma(\mu^- \to e^-)/\sigma(capt.)|_{Au} < 7.0 \times 10^{-13}$ at the 90% C.L. SINDRUM II collaboration, Eur. Phys. J. C **47** (2006) 337;
- BR(μ → γ + e)< 4.2 × 10⁻¹³ at the 90% C.L. MEG collaboration, Eur. Phys. J. C 76 (2016) 434;
- BR($\mu \rightarrow 3e$) < 5.0 × 10⁻¹⁵ at the 90% C.L. Mu3e collaboration;
- $\sigma(\mu^- \to e^-)/\sigma(capt.)|_{A1} < 1.0 \times 10^{-16}$ at the 90% C.L. Mu2e and COMET collaborations;
- BR($\mu \rightarrow \gamma + e$)< 4.0 × 10⁻¹⁴ at the 90% C.L. MEG II collaboration.

SMEFT	From EW to EM	Conclusion
000000	0000000	0

Golden channels: Past, present and future

Intro

ヨー わへで

Conclusion o

(ロ) (同) (三) (三) (三) (○) (○)

Extending the interactions of the SM

Assumptions: SM is merely an effective theory, valid up to some scale Λ . It can be extended to a field theory that satisfies the following requirements:

- its gauge group should contain $SU(3)_C \times SU(2)_L \times U(1)_Y$;
- all the SM degrees of freedom must be incorporated;
- at low energies (i.e. when $\Lambda \to \infty$), it should reduce to SM.

Assuming that such reduction proceeds via decoupling of New Physics (NP), the Appelquist-Carazzone theorem allows us to write such theory in the form:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right).$$

Conclusion o

Dimension-six operators

	2	2-leptons
Q_{eW}	=	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu};$
Q_{eB}	=	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}.$
$Q_{\varphi l}^{(1)}$	=	$(\varphi^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} \varphi)(\bar{l}_p \gamma^{\mu} l_r)$
$Q^{(3)}_{\varphi l}$	=	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi e}$	=	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$
$Q_{e\varphi}$	=	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
	E	4-leptons
Q_{ll}	=	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$
Q_{ee}	=	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$
Q_{le}	=	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$

4-fermions

$$Q_{lq}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$$

$$Q_{lq}^{(3)} = (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$$

$$Q_{eu} = (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$$

$$Q_{ed} = (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$$

$$Q_{lu} = (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$$

$$Q_{ld} = (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$$

$$Q_{qe} = (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$$

$$= (\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$$

 Q_l

 $Q_{lequ}^{(1)}$

 $Q_{lequ}^{(3)}$

$$= (\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$$

$$= (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From EW to EM

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Low-energy LFV observables

Neutrinoless radiative decay

$$\mathrm{Br}\left(\mu \to e\gamma\right) = \frac{\alpha_e m_{\mu}^5}{\Lambda^4 \Gamma_{\mu}} \left(\left| C_L^D \right|^2 + \left| C_R^D \right|^2 \right) \,.$$

Neutrinoless three-body decay

$$\begin{split} \mathrm{Br}(\mu \to 3e) &= \frac{\alpha_e^2 m_{\mu}^5}{12\pi \Lambda^4 \Gamma_{\mu}} \left(\left| C_L^D \right|^2 + \left| C_R^D \right|^2 \right) \left(8 \log \left[\frac{m_{\mu}}{m_e} \right] - 11 \right) \\ &+ \frac{m_{\mu}^5}{3(16\pi)^3 \Lambda^4 \Gamma_{\mu}} \left(\left| C_{ee}^{S \ LL} \right|^2 + 16 \left| C_{ee}^{V \ LL} \right|^2 + 8 \left| C_{ee}^{V \ LR} \right|^2 \\ &+ \left| C_{ee}^{S \ RR} \right|^2 + 16 \left| C_{ee}^{V \ RR} \right|^2 + 8 \left| C_{ee}^{V \ RL} \right|^2 \right). \end{split}$$

Coherent conversion in nuclei

$$\Gamma_{\mu \to e}^{N} = \frac{m_{\mu}^{5}}{4\Lambda^{4}} \left| e \, C_{L}^{D} \, D_{N} + 4 \left(G_{F} m_{\mu} m_{p} \tilde{C}_{(p)}^{SL} S_{N}^{(p)} + \tilde{C}_{(p)}^{VR} \, V_{N}^{(p)} + p \to n \right) \right|^{2} + L \leftrightarrow R.$$

Conclusion o

High-energy LFV observables

Flavour-violating Z decays can be parametrised at the tree level by means of the following four operators:

$$\begin{split} \Gamma(Z \to l_1^{\pm} l_2^{\mp}) &= \frac{m_Z^3 v^2}{12 \pi \Lambda^4} \left(\left| C_{eZ}^{12} \right|^2 + \left| C_{eZ}^{21} \right|^2 \right. \\ &+ \left| C_{\varphi e}^{12} \right|^2 + \left| C_{\varphi l(1)}^{12} \right|^2 + \left| C_{\varphi l(3)}^{12} \right|^2 \right), \end{split}$$

and all of their contributions occur at the same order. We have summed over the two possible final states, $l_1^+ l_2^-$ and $l_1^- l_2^+$.

For the Higgs boson decay $H \rightarrow l_1^{\pm} l_2^{\mp}$, one has

$$\Gamma(H \to l_1^{\pm} l_2^{\mp}) = \frac{m_H v^4}{16 \pi \Lambda^4} \left(\left| C_{e\varphi}^{12} \right|^2 + \left| C_{e\varphi}^{21} \right|^2 \right),$$

where only one operator contributes at tree level. Again, we have summed over the two possible decays $l_1^+ l_2^-$ and $l_1^- l_2^+$.

・ロト・西・・田・・日・・日・

SMEFT

From EW to EN

Conclusion

Dimension-six operators: lepton current at one loop

From a point-like interaction...

... to quantum fluctuations!

SMEFT	From EW to EM	Conclusion
00000	0000000	0

Experimental limits "reinterpreted" at the EW scale

MEG (2016): $\mu \rightarrow \mathbf{e}\gamma$

No correlation: limits from muonic cLFV

GMP and A. Signer JHEP **1410** (2014) 014

F. Feruglio, arXiv:1509.08428

GMP and A. Signer EPJWC **118** (2016) 01031

Coefficient	MEG $(\mu \rightarrow e\gamma)$ BR $\leq 5.7 \cdot 10^{-13}$	ATLAS $(Z \to e\mu)$ BR $\leq 7.5 \cdot 10^{-7}$	SINDRUM $(\mu \rightarrow 3e)$ BR $\leq 1.0 \cdot 10^{-12}$
$C^{\mu e}_{eZ}(m_Z)$	$1.4\cdot 10^{-13} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$5.5\cdot 10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$2.8\cdot 10^{-8} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$
$C^{(1)}_{\varphi l}$	$2.5\cdot10^{-10}\tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$5.5\cdot10^{-8} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$2.5\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C^{(3)}_{\varphi l}$	$2.4 \cdot 10^{-10} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$	$5.5\cdot 10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$2.5\cdot 10^{-11} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$
$C_{\varphi e}$	$2.4\cdot 10^{-10} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$5.5\cdot 10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$2.6\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C^{\mu e}_{e \varphi}$	$2.7\cdot 10^{-8} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$		$6.1\cdot 10^{-6} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$
$C_{le}^{eee\mu}$	$4.2 \cdot 10^{-8} \frac{\Lambda^2}{\left[\Theta \cdot V \right]^2}$		$2.2\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C_{le}^{e\mu\mu\mu}$	$2.0\cdot 10 \frac{10}{[\mathrm{GaV}]^2}$		
$C_{le}^{e au au\mu}$	$1.2 \cdot 10^{-11} \frac{2\Lambda^4}{[\text{GeV}]^2}$		
$C_{ee}^{eee\mu}$			$7.7\cdot 10^{-12} \frac{\Lambda^2}{[{\rm GeV}]^2}$
$C_{ll}^{eee\mu}$			$7.7\cdot 10^{-12} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

$C_{eZ}(m_Z)$	$1.5 \cdot 10^{-5} \frac{\Pi}{[\text{GeV}]^2}$	$2.2 \cdot 10^{-7} \frac{\Pi}{[\text{GeV}]^2}$	$6.1 \cdot 10^{-7} \frac{\Pi}{[\text{GeV}]^2}$	
$C^{(1)}_{\varphi l}$	$1.6\cdot 10^{-7} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	$2.2\cdot 10^{-7} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$	$9.0\cdot 10^{-9} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	
$C^{(3)}_{\varphi l}$	$1.6\cdot 10^{-7} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	$2.2\cdot 10^{-7} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$	$9.0\cdot 10^{-9} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	
$C_{\varphi e}$	$1.6\cdot 10^{-7} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	$2.2\cdot 10^{-7} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$	$9.5\cdot 10^{-9} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	
$C^{\tau\mu}_{e\varphi}$	$1.9\cdot 10^{-6} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$		$1.1\cdot 10^{-5} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$1.3 \cdot 10^{-7} \frac{\Lambda^2}{[\text{GeV}]^2}$
$C_{le}^{\mu ee\tau}$	$4.7\cdot10^{-4}\frac{\Lambda^2}{\left \mathrm{GeV}\right ^2}$			
$C_{le}^{\mu\mu\mu\tau}$	$2.3 \cdot 10^{-6} \frac{\pi^2}{[CeV]^2}$		$8.0\cdot 10^{-9} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	
$C_{le}^{\mu\tau\tau\tau}$	$1.3 \cdot 10^{-2} \frac{\Lambda^2}{18 e \text{V}^2}$			
$C_{ee}^{\mu\mu\mu\tau}$	-		$2.8\cdot 10^{-9} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	
$C_{ll}^{\mu\mu\mu\tau}$			$2.8\cdot 10^{-9} \frac{\Lambda^2}{[{\rm GeV}]^2}$	

No correlation: limits from tauonic cLFV

 $|\text{Coefficient}||\text{BaBar} (\tau \to \mu\gamma)|\text{LEP} (Z \to \tau\mu)|\text{BELL} (\tau \to 3\mu)|\text{ATLAS\&CMS} (H \to \tau\mu)|$

 $BR \le 2.1 \cdot 10^{-8}$

7 12

 $BR \le 1.2 \cdot 10^{-5}$

7 12

 $BR \leq 4.4 \cdot 10^{-8}$

~T11 /

 $BR \leq 1.85 \cdot 10^{-2}$

Conclusion o

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Dipole evolution below the EWSB scale

At the two-loop level, in the tHV scheme:

$$\begin{split} \dot{C}_{L}^{D} &= 16 \, \alpha_{e} \, Q_{l}^{2} \left[\begin{array}{c} C_{L}^{D} \\ - \end{array} \right] - \frac{Q_{l}}{(4\pi)} \frac{m_{e}}{m_{\mu}} \left[\begin{array}{c} C_{ee}^{S \ LL} \\ - \end{array} \right] - \frac{Q_{l}}{(4\pi)} \left[\begin{array}{c} C_{\mu\mu}^{S \ LL} \\ - \end{array} \right] \\ &+ \sum_{h} \frac{8Q_{h}}{(4\pi)} \frac{m_{h}}{m_{\mu}} N_{c,h} \left[\begin{array}{c} C_{hh}^{T \ LL} \\ - \end{array} \right] \Theta(\mu - m_{h}) \\ &- \frac{\alpha_{e}Q_{l}^{3}}{(4\pi)^{2}} \left(\frac{116}{9} \left[\begin{array}{c} C_{ee}^{V \ RR} \\ - \end{array} \right] + \frac{116}{9} \left[\begin{array}{c} C_{\mu\mu}^{V \ RR} \\ - \end{array} \right] - \frac{122}{9} \left[\begin{array}{c} C_{\mu\mu}^{V \ RL} \\ - \end{array} \right] - \left(\frac{50}{9} + 8 \frac{m_{e}}{m_{\mu}} \right) \left[\begin{array}{c} C_{ee}^{V \ RL} \\ - \end{array} \right] \\ &- \sum_{h} \frac{\alpha_{e}}{(4\pi)^{2}} \left(6Q_{h}^{2}Q_{l} + \frac{4Q_{h}Q_{l}^{2}}{9} \right) N_{c,h} \left[\begin{array}{c} C_{hh}^{V \ RR} \\ - \end{array} \right] \Theta(\mu - m_{h}) \\ &- \sum_{h} \frac{\alpha_{e}}{(4\pi)^{2}} \left(-6Q_{h}^{2}Q_{l} + \frac{4Q_{h}Q_{l}^{2}}{9} \right) N_{c,h} \left[\begin{array}{c} C_{hh}^{V \ RL} \\ - \end{array} \right] \Theta(\mu - m_{h}) \\ &- \sum_{h} \frac{\alpha_{e}}{(4\pi)^{2}} 4Q_{h}^{2}Q_{l}N_{c,h} \frac{m_{h}}{m_{\mu}} \left[\begin{array}{c} C_{hh}^{S \ LR} \\ - \end{array} \right] \Theta(\mu - m_{h}) + [\dots] . \end{split}$$

A. Crivellin, S. Davidson, GMP and A. Signer, JHEP 1705 (2017) 117.

In absence of interplay at the EWSB scale

	$Br (\mu^+ \to e^+ \gamma)$		${\rm Br}(\mu^+\to e^+e^-e^+)$		${ m Br}^{ m Au/Al}_{\mu ightarrow e}$	
	$4.2 \cdot 10^{-13}$	$4.0\cdot 10^{-14}$	$1.0\cdot 10^{-12}$	$5.0\cdot 10^{-15}$	$7.0 \cdot 10^{-13}$	$1.0\cdot 10^{-16}$
C_L^D	$1.0\cdot 10^{-8}$	$3.1\cdot 10^{-9}$	$2.0\cdot 10^{-7}$	$1.4\cdot 10^{-8}$	$2.0\cdot 10^{-7}$	$2.9\cdot 10^{-9}$
$C_{ee}^{S \ LL}$	$4.8 \cdot 10^{-5}$	$1.5\cdot 10^{-5}$	$8.1\cdot 10^{-7}$	$5.8\cdot 10^{-8}$	$1.4\cdot 10^{-3}$	$2.1\cdot 10^{-5}$
$C^{S \ LL}_{\mu\mu}$	$2.3\cdot 10^{-7}$	$7.2\cdot 10^{-8}$	$4.6\cdot 10^{-6}$	$3.3\cdot 10^{-7}$	$7.1\cdot 10^{-6}$	$1.0\cdot 10^{-7}$
$C_{\tau\tau}^{S \ LL}$	$1.2\cdot 10^{-6}$	$3.7\cdot 10^{-7}$	$2.4\cdot 10^{-5}$	$1.7\cdot 10^{-6}$	$2.4\cdot 10^{-5}$	$3.5\cdot 10^{-7}$
$C_{\tau\tau}^{T \ LL}$	$2.9\cdot 10^{-9}$	$9.0\cdot 10^{-10}$	$5.7\cdot 10^{-8}$	$4.1\cdot 10^{-9}$	$5.9\cdot10^{-8}$	$8.5\cdot 10^{-10}$
$C_{bb}^{S \ LL}$	$2.8\cdot 10^{-6}$	$8.6\cdot 10^{-7}$	$5.4\cdot 10^{-5}$	$3.8\cdot 10^{-6}$	$9.0\cdot 10^{-7}$	$1.2\cdot 10^{-8}$
$C_{bb}^{T \ LL}$	$2.1\cdot 10^{-9}$	$6.4\cdot 10^{-10}$	$4.1\cdot 10^{-8}$	$2.9\cdot 10^{-9}$	$4.2\cdot 10^{-8}$	$6.0\cdot 10^{-10}$
$C_{ee}^{V \ RR}$	$3.0 \cdot 10^{-5}$	$9.4\cdot 10^{-6}$	$2.1\cdot 10^{-7}$	$1.5\cdot 10^{-8}$	$2.1\cdot 10^{-6}$	$3.5\cdot 10^{-8}$
$C^{V RR}_{\mu\mu}$	$3.0 \cdot 10^{-5}$	$9.4\cdot 10^{-6}$	$1.6\cdot 10^{-5}$	$1.1\cdot 10^{-6}$	$2.1\cdot 10^{-6}$	$3.5\cdot 10^{-8}$
$C_{\tau\tau}^{VRR}$	$1.0 \cdot 10^{-4}$	$3.2\cdot 10^{-5}$	$5.3\cdot 10^{-5}$	$3.8\cdot 10^{-6}$	$4.8\cdot 10^{-6}$	$7.9\cdot 10^{-8}$
$C_{bb}^{V \ RR}$	$3.5\cdot10^{-4}$	$1.1\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.8\cdot 10^{-6}$	$6.0\cdot 10^{-6}$	$1.0\cdot 10^{-7}$
C_{bb}^{RA}	$4.2\cdot 10^{-4}$	$1.3\cdot 10^{-4}$	$6.5\cdot 10^{-3}$	$4.6\cdot 10^{-4}$	$1.3\cdot 10^{-3}$	$2.2\cdot 10^{-5}$
C_{bb}^{RV}	$2.1 \cdot 10^{-3}$	$6.4\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.7\cdot 10^{-6}$	$6.0\cdot 10^{-6}$	$1.0\cdot 10^{-7}$

Limits on the various coefficients $C_i(m_W)$ from current and future experimental constraints, assuming that (at the high scale m_W) only one coefficient at a time is non-vanishing and not including operator-dependent efficiency corrections.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusion o

Interplay at the EWSB scale Mu3e money plot

Intro 000

From EW to EM

Conclusion o

Interplay at the EWSB scale COMET/Mu2e money plot (1)

E 990

From EW to EM

Conclusion o

Interplay at the EWSB scale COMET/Mu2e money plot (2)

500

From EW to EM

Conclusion o

MEG/MEG-II money plot

990

Conclusion

Conclusion

 \checkmark LFV phenomena are forbidden in the minimal SM

- Neutrino sector seems to ignore this fact, calling for something <u>more</u> than the minimal "version"
- · Charged sector seems to take the job seriously
- $\checkmark\,$ If NP lives high energy scales, consistent EFT techniques can be adopted to extract information from low-energy observables
- \checkmark From limits on LFV observables one can obtain information on the parameter space of possible UV-complete BSM theories
- \checkmark Interplay among observables is crucial
- $\checkmark\,$ "MEG tests the dipole interaction, and Mu2e/Mu3e test the contact interaction" is a misleading statement