Status of QCD at nonzero temperature (and density)

Alexei Bazavov

Michigan State University

August 1, 2018

Introduction

QCD phase diagram Lattice gauge theory

Selected results

Chiral symmetry restoration Curvature of the crossover line The equation of state at $O(\mu_B^6)$ Constraints on the critical point Equation of state at high temperature Screening properties at high temperature

Conclusion

 Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase¹

- Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase¹
- Experimental program: RHIC, LHC, FAIR, NICA

- Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase¹
- Experimental program: RHIC, LHC, FAIR, NICA
- RHIC BES: search for the critical point

- Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase¹
- Experimental program: RHIC, LHC, FAIR, NICA
- RHIC BES: search for the critical point
- First-principle calculations are possible at $\mu_B/T = 0$, expansions/extrapolations at small μ_B/T

¹Collins, Perry (1975), Cabbibo, Parisi (1975)

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \mathcal{O} \exp(-\mathcal{S}_{E}(\mathcal{T}, V, \vec{\mu})),$$

$$\mathcal{Z}(\mathcal{T}, V, \vec{\mu}) = \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-\mathcal{S}_{E}(\mathcal{T}, V, \vec{\mu})),$$

$$\begin{aligned} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \ \mathcal{O} \exp(-\mathcal{S}_{E}(T, V, \vec{\mu})), \\ \mathcal{Z}(T, V, \vec{\mu}) &= \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-\mathcal{S}_{E}(T, V, \vec{\mu})), \\ \mathcal{S}_{E}(T, V, \vec{\mu}) &= -\int_{0}^{1/T} dx_{0} \int_{V} d^{3} \mathbf{x} \mathcal{L}^{E}(\vec{\mu}), \end{aligned}$$

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \ \mathcal{O} \exp(-\mathcal{S}_E(T, V, \vec{\mu})), \\ \mathcal{Z}(T, V, \vec{\mu}) &= \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-\mathcal{S}_E(T, V, \vec{\mu})), \\ \mathcal{S}_E(T, V, \vec{\mu}) &= -\int_0^{1/T} dx_0 \int_V d^3 \mathbf{x} \mathcal{L}^E(\vec{\mu}), \\ \mathcal{L}^E(\vec{\mu}) &= \mathcal{L}^E_{QCD} + \sum_{f=u,d,s} \mu_f \bar{\psi}_f \gamma_0 \psi_f \end{split}$$

► Start with the path integral quantization, Euclidean signature:

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \ \mathcal{O} \exp(-\mathcal{S}_E(T, V, \vec{\mu})), \\ \mathcal{Z}(T, V, \vec{\mu}) &= \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-\mathcal{S}_E(T, V, \vec{\mu})), \\ \mathcal{S}_E(T, V, \vec{\mu}) &= -\int_{0}^{1/T} dx_0 \int_{V} d^3 \mathbf{x} \mathcal{L}^E(\vec{\mu}), \\ \mathcal{L}^E(\vec{\mu}) &= \mathcal{L}^E_{QCD} + \sum_{f=u,d,s} \mu_f \bar{\psi}_f \gamma_0 \psi_f \end{split}$$

 Introduce a (non-perturbative!) regulator – minimum space-time "resolution" scale a, i.e. lattice, Wilson (1974)

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \ \mathcal{O} \exp(-\mathcal{S}_{E}(T, V, \vec{\mu})), \\ \mathcal{Z}(T, V, \vec{\mu}) &= \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-\mathcal{S}_{E}(T, V, \vec{\mu})), \\ \mathcal{S}_{E}(T, V, \vec{\mu}) &= -\int_{0}^{1/T} dx_{0} \int_{V} d^{3} \mathbf{x} \mathcal{L}^{E}(\vec{\mu}), \\ \mathcal{L}^{E}(\vec{\mu}) &= \mathcal{L}^{E}_{QCD} + \sum_{f=u,d,s} \mu_{f} \bar{\psi}_{f} \gamma_{0} \psi_{f} \end{split}$$

- Introduce a (non-perturbative!) regulator minimum space-time "resolution" scale a, i.e. lattice, Wilson (1974)
- \blacktriangleright The lattice spacing a acts as a UV cutoff, $p_{max} \sim \pi/a$

► Start with the path integral quantization, Euclidean signature:

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \ \mathcal{O} \exp(-\mathcal{S}_{E}(T, V, \vec{\mu})), \\ \mathcal{Z}(T, V, \vec{\mu}) &= \int \mathcal{D}[\psi] \mathcal{D}[\bar{\psi}] \mathcal{D}[A] \exp(-\mathcal{S}_{E}(T, V, \vec{\mu})), \\ \mathcal{S}_{E}(T, V, \vec{\mu}) &= -\int_{0}^{1/T} dx_{0} \int_{V} d^{3} \mathbf{x} \mathcal{L}^{E}(\vec{\mu}), \\ \mathcal{L}^{E}(\vec{\mu}) &= \mathcal{L}^{E}_{QCD} + \sum_{f=u,d,s} \mu_{f} \bar{\psi}_{f} \gamma_{0} \psi_{f} \end{split}$$

- Introduce a (non-perturbative!) regulator minimum space-time "resolution" scale a, i.e. lattice, Wilson (1974)
- The lattice spacing *a* acts as a UV cutoff, $p_{max} \sim \pi/a$
- The integrals can be evaluated with importance sampling methods

Taylor expansion in μ/T

• The chemical potentials for conserved charges B, Q, S:

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q},$$

$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q},$$

$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

Taylor expansion in μ/T

• The chemical potentials for conserved charges B, Q, S:

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q},$$

$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q},$$

$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

The pressure can be expanded in Taylor series

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!\,k!} \hat{\mu}_B^i \hat{\mu}_Q^j \hat{\mu}_S^k$$

Taylor expansion in μ/T

• The chemical potentials for conserved charges B, Q, S:

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q},$$

$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q},$$

$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

The pressure can be expanded in Taylor series

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!\,k!} \hat{\mu}_B^i \hat{\mu}_Q^j \hat{\mu}_S^k$$

 The generalized susceptibilities are evaluated at vanishing chemical potential

$$\chi_{ijk}^{BQS} \equiv \chi_{ijk}^{BQS}(T) = \left. \frac{\partial P(T,\hat{\mu})/T^4}{\partial \hat{\mu}_B^i \partial \hat{\mu}_Q^j \partial \hat{\mu}_S^k} \right|_{\hat{\mu}=0}, \quad \hat{\mu} \equiv \frac{\mu}{T}$$

Constrained series expansions

The number densities can also be represented with Taylor expansions:

$$\frac{n_X}{T^3} = \frac{\partial P/T^4}{\partial \hat{\mu}_X}, \ X = B, Q, S$$

Constrained series expansions

The number densities can also be represented with Taylor expansions:

$$\frac{n_X}{T^3} = \frac{\partial P/T^4}{\partial \hat{\mu}_X}, \ X = B, Q, S$$

► In heavy-ion collisions there are additional constraints:

$$n_S = 0, \quad \frac{n_Q}{n_B} = 0.4$$

Constrained series expansions

The number densities can also be represented with Taylor expansions:

$$\frac{n_X}{T^3} = \frac{\partial P/T^4}{\partial \hat{\mu}_X}, \ X = B, Q, S$$

► In heavy-ion collisions there are additional constraints:

$$n_S=0, \quad \frac{n_Q}{n_B}=0.4$$

These constraints can be fulfilled by

$$\hat{\mu}_Q(T,\mu_B) = q_1(T)\hat{\mu}_B + q_3(T)\hat{\mu}_B^3 + q_5(T)\hat{\mu}_B^5 + \dots , \hat{\mu}_S(T,\mu_B) = s_1(T)\hat{\mu}_B + s_3(T)\hat{\mu}_B^3 + s_5(T)\hat{\mu}_B^5 + \dots$$

Selected results

Chiral symmetry restoration

Chiral condensate and susceptibility

$$\langle \bar{\psi}\psi \rangle_f = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial m_f}, \quad \chi(T) = \frac{\partial \langle \bar{\psi}\psi \rangle_f}{\partial m_f}$$

Chiral symmetry restoration

Chiral condensate and susceptibility

$$\langle \bar{\psi}\psi \rangle_f = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial m_f}, \quad \chi(T) = \frac{\partial \langle \bar{\psi}\psi \rangle_f}{\partial m_f}$$

Chiral symmetry restoration

Chiral condensate and susceptibility

$$\langle \bar{\psi}\psi \rangle_f = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial m_f}, \quad \chi(T) = \frac{\partial \langle \bar{\psi}\psi \rangle_f}{\partial m_f}$$

The chiral crossover temperature at $\mu_B = 0$ (Borsanyi et al. [BW] (2010), Bazavov et al. [HotQCD] (2012))

$$T_c = 154 \pm 9$$
 MeV

Chiral symmetry restoration (update)²

The chiral crossover temperature at $\mu_B=0$ (HotQCD, preliminary) $T_c=156.5\pm1.5$ MeV

²Figure from the talk at Quark Matter 2018 by P. Steinbrecher

A. Bazavov (MSU)

Confinement2018

Chiral symmetry restoration (update)²

The chiral crossover temperature at $\mu_B=0$ (HotQCD, preliminary) $T_c=156.5\pm1.5~{
m MeV}$

See talk by C. Schmidt, Wed 14:00

²Figure from the talk at Quark Matter 2018 by P. Steinbrecher

Chiral symmetry restoration (update)³

Comparison with earlier results

³Figure from talk at Quark Matter 2018 by P. Steinbrecher

Curvature of the chiral crossover line

• Change in the chiral crossover temperature with μ_B

Curvature of the chiral crossover line⁴

Change in the chiral crossover temperature with μ_B

⁴Figure from the talk at Quark Matter 2018 by M. D'Elia

A. Bazavov (MSU)

Confinement2018

 The magnitude of the chiral susceptibility shows almost no change with increasing µ_B > 0

- ► The magnitude of the chiral susceptibility shows almost no change with increasing µ_B > 0
- No indication that the crossover is getting stronger

- ► The magnitude of the chiral susceptibility shows almost no change with increasing µ_B > 0
- No indication that the crossover is getting stronger
- Similar conclusion from the baryon number fluctuations along the crossover line

Freeze-out line

Freeze-out line

 The chiral crossover line coincides with the freeze-out line (data from ALICE:1408.6403, STAR:1701.07065)

Freeze-out line

- The chiral crossover line coincides with the freeze-out line (data from ALICE:1408.6403, STAR:1701.07065)
- The energy and entropy densities are constant along the chiral crossover line

The equation of state at $O(\mu_B^6)$

• The equation of state at $\mu_B = 0^5$

⁵Borsanyi et al. [WB] (2014), Bazavov et al. [HotQCD] (2014)

A. Bazavov (MSU)

Confinement2018

The equation of state at $O(\mu_B^6)$

• The equation of state at $\mu_B = 0^5$

• Additional contribution at $\mu_B > 0$, $\mu_Q = \mu_S = 0$:

$$\frac{\Delta P}{T^4} = \frac{1}{2} \chi_2^B(T) \hat{\mu}_B^2 \left(1 + \frac{1}{12} \frac{\chi_4^B(T)}{\chi_2^B(T)} \hat{\mu}_B^2 + \frac{1}{360} \frac{\chi_6^B(T)}{\chi_2^B(T)} \hat{\mu}_B^4 + \dots \right)$$

⁵Borsanyi et al. [WB] (2014), Bazavov et al. [HotQCD] (2014)

The equation of state at $O(\mu_B^6)^6$

The equation of state at $O(\mu_B^6)$

The contribution to the pressure due to finite chemical potential (left) and the baryon number density (right) for strangeness neutral systems:

$$n_S = 0, \quad \frac{n_Q}{n_B} = 0.4$$

Constraints on the critical point

• For $\mu_Q = \mu_S = 0$ the net baryon-number susceptibility is

$$\chi_2^B(T,\mu_B) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^B \hat{\mu}_B^{2n}$$

Constraints on the critical point

• For $\mu_Q = \mu_S = 0$ the net baryon-number susceptibility is

$$\chi_2^B(T,\mu_B) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^B \hat{\mu}_B^{2n}$$

The radius of convergence

$$r_{2n}^{\chi} \equiv \sqrt{\frac{2n(2n-1)\chi_{2n}^B}{\chi_{2n+2}^B}}$$

Constraints on the critical point

• For $\mu_Q = \mu_S = 0$ the net baryon-number susceptibility is

$$\chi_2^B(T,\mu_B) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \chi_{2n+2}^B \hat{\mu}_B^{2n}$$

The radius of convergence

$$r_{2n}^{\chi} \equiv \sqrt{\frac{2n(2n-1)\chi_{2n}^B}{\chi_{2n+2}^B}}$$

▶ We observe $\chi_6^B/\chi_4^B < 3$ for 135 < T < 155 MeV $\Rightarrow r_4^{\chi} ≥ 2$

Equation of state at high temperature

- The trace anomaly (left) and pressure (right) compared with (HTL)⁷ and Electrostatic QCD (EQCD)⁸ calculations
- The black line is the HTL calculation with the renormalization scale $\mu = 2\pi T$

⁷Haque et al. (2014)

⁸Laine and Schroder (2006)

Equation of state at high temperature

- The trace anomaly (left) and pressure (right) compared with (HTL)⁷ and Electrostatic QCD (EQCD)⁸ calculations
- The black line is the HTL calculation with the renormalization scale $\mu = 2\pi T$
- Extension of the 2+1 flavor equation of state to higher temperatures – see talk by J. Weber, Wed 14:30

⁷Haque et al. (2014) ⁸Laine and Schroder (2006)

Equation of state at high temperature

- Left: Comparison of the pressure obtained on the lattice with the HTL⁹ and EQCD¹⁰ results
- Right: Comparison of the entropy density obtained on the lattice with the HTL and NLA¹¹ results

```
<sup>9</sup>Haque et al. (2014)
<sup>10</sup>Laine and Schroder (2006)
<sup>11</sup>Rebhan (2003)
```

A. Bazavov (MSU)

Confinement2018

Screening properties at high temperature

 The singlet free energy (left) and the effective coupling (right) at temperatures up to 2.2 GeV¹²

Screening properties at high temperature

- The singlet free energy (left) and the effective coupling (right) at temperatures up to 2.2 GeV¹²
- Comparison with weak-coupling calculations shows three distinct regimes: for $rT \leq 0.3$ medium effects are small, consistent with pNRQCD; for $0.3 \leq rT \leq 0.6$ screening effects are described by perturbative EQCD; for rT > 0.6 non-perturbative chromo-magnetic effects become important

¹²TUMQCD, 1804.10600

Conclusion

- Lattice QCD calculations are now in the regime of the physical light quark masses and continuum limit is possible for many observables
- ▶ The most studied region of the QCD phase diagram is at $\mu_B = 0$
- ▶ The region of small μ/T can be explored with expansions in μ/T or by analytic continuation from imaginary μ
- ▶ (Preliminary) updates on the chiral crossover temperature
- Generalized susceptibilities are now calculated up to 8th order in μ_B
- The equation of state is now known up to the 6th order in μ_B
- ▶ Recent lattice calculations strongly disfavor QCD critical point in the region of $\mu_B < 2T$ in the temperature range 135 < T < 155 MeV
- ► At $\mu_B = 0$ the 2+1 flavor QCD equation of state has been calculated up to T = 2 GeV