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The plan

e Importance sampling and sign problem
e Complexification and contour deformation
e Generalized thimble method

e Case studies: Massive Thirring model & real-time
correlators

e New proposals: sign optimized manifolds and
learnifolds



Motivation

e Physical models of interest require non-perturbative
calculations that have a sign problem:

e QCD at finite baryon density (RHIC, neutron star
structure, etc)

e Real time dynamics for strongly coupled QFT
o Strongly correlated electrons (Hubbard model, etc.)

e While a generic solution to the sign problem is
impossible, thimble methods are likely to work for a
large class of problems.




QFT on the lattice

e The partition function is expressed as a path integral

e The fields are sampled on a grid; difterential operators
are replaced by finite difference ones
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* The partition function is a many-dimensional integral
over real variables

* The integrand has no singularity for both bosonic
and fermionic theories



Monte-Carlo sampling

 QFT correlators are statistical averages
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e Estimate using importance sampling
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e Stochastic errors decrease with sample size
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Sign problem

e When the partition function is not real direct
Monte-Carlo sampling is not possible

* The usual workaround involves rewezghting
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Sign problem

A sign problem appears when the phase average
is nearly zero (or zero): e ®1(®) | 4 e7¥51(#N) « N

* The cost of the calculation is inversely 1l
proportional to the phase average: N <e—i51(¢>>

* For example in QCD

<6_ZSI> el i 4 e_ﬁv(fbaryon_fisospin) 18g O as V 5 00
Z0 ZO

e In QCD the calculation cost increases
exponentially with the volume



Contour deformation
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e Generalized Cauchy’s theorem
e Deformation in the field variable space (lattice geometry unchanged)



Holomorphic gradient flow
and Lefschetz thimbles
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Thimbles are generalizations of steepest \ d7
descent/stationary phase paths.
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M. Cristoforetti, F. Di Renzo, and L. Scorzato, High density QCD on a Lefschetz thimble, Phys. Rev. D86 (2012) 074506



Holomorphic gradient flow
and Lefschetz thimbles
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[.efschetz thimble

e 9(@122) (pea] plane) e 9(7:22)  (gaussian thimble)

S(z1,22) = 25 + x5 + 10ix1 + 20izs + iz122/3
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Complex Langevin vs contour
deformation

e Complex Langevin follows the
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B complex plane with possible
" runaways

-0.21

-04c. . .

e Complex integration is constrained
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Gert Aarts, arXiv:1308.4811
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(Generalized thimble method
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e Most systems require
multiple thimble

e Thimble decomposition

is hard

e Use the manifolds
generated by the
holomorphic flow



Manitolds generated by

holomorphic gradient flow
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Basic idea
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Manitolds generated by

holomorphic gradient flow

e Small regions are mapped (close) to thimbles and
contribute significantly to the integral, Sy varies little.

e The other regions flow towards Sr=c and contribute
little to the integral.
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Case study: massive Thirring
model in 1+1D
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Discretization (compact A’s)

S = Ng (912 Z(l —cos A, (x)) — vlogdet D(A))
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A projection of the thimbles: ¢ = % > Ag(x)
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Case study: real time physics

e Motivation: compute out-of-equilibrium correlators,
transport coefhicients non-perturbatively from first
principles

e Observables of interest are transport coefhicient such as
shear viscosity; conductivity, etc.

o At thermal equilibrium the observables are of the type

(O1()O0a(t)) = Tr[O1 (1) O2(t) p], p=ePH



Real time physics
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The worst sign problem

® @ @ .$

[
¢ a o
1
1 — e W

The field variables attached to real t1me legs contribute a purely imaginary
factor to the action because exp(— = (¢pa1|exp(—iaH)|p,) produces a
contribution to the action S,, that is purely imaginary.
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Re C(t,0)

Real time physics (1+1D)
strong coupling
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New directions

e On the flow manifolds sampling is done based on the effective action

Sett(x) = Sr(z(z)) — In | det J(x)
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e For each step integrate a set of differential equations to get z and ]
e This is expensive, especially the calculation of J and det J
e To address this problem we used

e improved sampling algorithms (avoid computing J or det J)

e fast estimators for det J

e numerically cheaper integration manifolds
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New directions — learnifold

e Generate few configs on the
integration manifold

e Use neural nets with appropriate
symmetries to interpolate

e Integrate over the learnifold, the

manifold defined by the trained

neural net
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New directions — learnifold

e We use a feed-forward
network and train it using
supervised learning

e The networks learns quickly
about the constant shift,
further improvements are slow

L copt AR T TTITTIIT YT e Most of the cost is in
Wilson, 20x10 lattice, NF=2, am¢=0.3 generating the seed
0.35? . Conﬁgurations v.viFh much less
030, ! required for training
b2 ¥ e Integrations over learnifold is
] i fast and we were able to use it
0.10¢ e to explore larger parameter
005} E region for Thirring 1+1 model
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Sign optimized manifolds
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Since V) Z = 0 the sign average can

be optimized by minimizing / / ””” )\>O
the phase-quenched partition function

For a given ansatz z = f)(x) we can maximize (o) with respect
to A, using a stochastic gradient descent. For a well chosen ansatz,
the estimate for the gradient can be computed quickly.

Valog (o) = (VaS — Trlog J7'Vad)p o

Mori, Kashiwa & Ohnishi, arXiv:1705.05605 AA, Bedaque, Lamm & Lawrence, arXiv:1804.00697 Bursa & Kroyter, arXiv:1805.04941
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Sign optimized manifolds

e For Thirring model in 2+1 dimensions, we use an ansatz motivated by
the dense limit

Ao(x) — Ap(z) +ifa|Ao(z)]
Ai(x) — Ai(z)
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e For this ansatz the Jacobian )\ ~

can be computed efficiently =

det J = | [[1 +if'(Ao())] '

e We carry out the sign 0
optimization for a set of 00
temperatures and densities to
investigate the phase diagram




Conclusions

e Complex manifold integration is a generic method for systems
with sign problems: finite density QFTs, real time, etc.

e Field complexification serves as a knob to control the sign
problem.

e Holomorphic gradient flow generates a continuous family of
manifolds with improved sign average (with Lefschetz thimble
decomposition a limiting case).

e Thimbles and holomorphic low manifolds are only one
option. There is a large degree of freedom in choosing
complex deformations to address the numerical challenges
specific to the system of interest (with new challenges and
opportunities).
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