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Jets are useful for:

measuring parameters:
measuring non.pert. distributions:  
   PDFs, hadronization, …

studying QCD dynamics:
  convergence of pert. QCD,
  collinear & soft limits (jet dynamics),
  jet constituents,  fragmentation,
  power corrections, …

key ingredient in new physics searches

�s,mt, . . .
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Exclusive Jet Production with a Hard Interaction:
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Relevant Momentum Regions:

Collinear Splittings•

Soft Emission• Hard Propagators (short dist.)•

Glauber Exchange•
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Figure 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularities. In b) we show the corresponding Glauber operators for the four operators in

SCET with two equivalent notations. The notation with the dotted line in c) emphasizes the factorized

nature of the n and n̄ sectors in the SCET Glauber operators, which have a 1/P2
? between them denoted

by the dashed line.

For simplicity we will carry out most of our calculations using the back-to-back choice with ni = n,

nj = n̄, and ij = (n · n̄)/2 = 1. Here we have

pµ =
nµ

2
n̄ · p+ n̄µ

2
n · p+ pµ? , (5.4)

and the variables in Eq. (5.3) reduce to the true energy and longitudinal momentum

d4p =
1

2
d(n · p) d(n̄ · p) d2p? = dp0 dpz d2p? . (5.5)

We will often use the shorthand p+ = n · p and p� = n̄ · p. All of our calculations, including our

final results, will apply equally well to the more general case in Eq. (5.1). For this more general

case factors of ij must be inserted, but can be inferred by using the invariance to simultaneous

rescaling ni ! ⇢ini and n̄i ! n̄i/⇢i for each i, which follows from the allowed values for these

collinear basis vectors in constructing SCET. This symmetry is called RPI-III invariance [84, 85].

When we refer to the longitudinal momentum, for this more general case we always mean pzij .

We use a common convention for the collinear momenta of the external lines in the 2–

2 scattering graphs in Fig. 4a, so q(pn
2

) + q̄(pn̄
1

) ! q(pn
3

) + q̄(pn̄
4

), where the superscripts are

included to indicate the type of collinear momentum, and we have the same labeling for the

gluon scattering cases. This is illustrated in Fig. 1. When we need to provide further labels to

an external particle we will use the same subscript as the momenta, such as for color indices A
1

,

A
2

, etc, and for vector indices µ
1

, µ
2

, etc. Momentum conservation implies p
1

+ p
2

= p
3

+ p
4

.

– 22 –

p� � p� � p+p�

p�

soft

n-collinear

n-collinear-

“n-collinear”

n-collinearn-collinear

forward scattering

onshell: p+p� = �p 2
�

p� p�

p� = p0 + pz

p+ = p0 � pz

pz > 0 n̂ = ẑ

factorization violating



Fields for various Modes:

�S , Aµ
S

dominant contributions from isolated 
regions of momentum space

•

use subtractions rather than sharp 
boundaries to preserve symmetry

•

�na , Aµ
na

�nb , A
µ
nb

�n3 , A
µ
n3

�n2 , A
µ
n2

�n1 , A
µ
n1

EFT for collider physics = Soft Collinear Effective Theory 
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Higgs
Production



Key Simplifying Principle is to Exploit the Hierarchy 
   of Scales 

µS

µJ , µB

µH

µp

E

SCET

QCD

µp
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J1
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J
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µH

Wilson coefficients
+ operators at

L =
�

i

CiOi

d� =
�

(phase space)
����
�

i

Ci�Oi�
����
2

=
�

j

Hj � (longer distance dynamics)j
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Quarks and Gluons
Form Jets

Exclusive Jet Production with a Hard Interaction:
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Hard-collinear factorization

Operators are built of building block fields:
O = (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)

“quark jet”
“gluon jet”

Wn = P exp
�
ig

� 0

��
ds n̄ · An(x + n̄s)

�
Wilson lines

�n = (W †
n�n)

Bµ
n� = [W †

niDµ
�Wn]
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µJ , µB

µH

µp

E

SCET

QCD

µp

µB

µJ

µS

J1

2

3

−

+

J

J

p

p

jet functions  
beam functions

d� = Ba,b �Hj �
�

i

Ji � (longer distance dynamics)

Ji
Ba,b



Soft-collinear factorization

Soft radiation knows only about bulk properties 
of radiation in the jets

(SnaSnbSn1Sn2Sn3) Soft Wilson Lines

µS



µS

µJ , µB

µH

µp

E

SCET

QCD

µp

µB

µJ

µS

J1
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−

+

J

J

p

p

eikonal line matrix elements for soft function
PDFs

Factorization:

S
fa,b

d� = fa,b � Ia,b �Hj �
�

i

Ji � S
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time

Hard Scattering Factorization:

SCET
µJ , µB

µH

µp

E
QCD

Idea of how factorization arises in SCET:

factorized Lagrangian: L(0)
SCETII,S,{ni} = L(0)

S

�
�S , AS

�
+

�

ni

L(0)
ni

�
�ni , Ani

�

µS

L(0)
SCETII

= L(0)
SCETII,S,{ni}+L

(0)
G

�
�S , AS , �ni , Ani)

L(0)
G =

�

n,n̄

�

i,j=q,g

OiB
n

1
P2
�
OBC

s
1
P2
�
OjC

n̄ +
�

n

�

i,j=q,g

OiB
n

1
P2
�
OjnB

s

Glauber Lagrangian:

Rothstein, IS
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time

Hard Scattering Factorization:

SCET
µJ , µB

µH

µp

E
QCD

Idea of how factorization arises in SCET:

factorized Lagrangian:

factorized Hard Ops:

L(0)
SCETII,S,{ni} = L(0)

S

�
�S , AS

�
+

�

ni

L(0)
ni

�
�ni , Ani

�

factorized squared matrix elements defining jet, soft, … functions

µS

factorized Measurement �(� � �na � �nb � �n1 � �n2 � �n3 � �s)

C � (Bna�)(Bnb�)(Bn1�)(�̄n2)(�n3)(YnaYnbYn1Yn2Yn3)
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time

Hard Scattering Factorization:

d� = fafb � �̂ � F
hadronization

Nonperturbative:

Perturbative:

µB µH µJ µS
hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S Used to Sum 
Logs

µp � �QCD

µS

µJ , µB

µH

µp

E
QCD

SCET

Universal Functions: 

µB � pT

µS � Esoft

µJ � mJ

µH � mHiggs

µp � �QCD

(In some cases by Operators,
 or is power suppressed)



dd

usoft particles

n-collinear 
       jet

n-collinear 
       jet

Examples of Factorization:
pp� Higgs + anything

d� =
�

dY
�

i,j

�
d�a

�a

d�b

�b
fi(�a, µ)fj(�b, µ) H incl

ij

�mHeY

Ecm�a
,
mHe�Y

Ecm�b
,mH , µ

�
• Inclusive Higgs production

• Dijet production e
+
e
−

→ 2 jets

= �0H(Q,µ) Q

�
d� d�� JT

�
Q2� �Q�, µ

�
ST (�� ��, µ)F (��)

hard
function

jet functions perturbative
soft function

non-perturbative
soft function

d�

d�

� � 1thrust

(PDFs contribute,  No Glaubers,  No Softs)

(No PDFs,  No Glaubers,  Softs contribute)

(Collins, Soper, Sterman)
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Higgs qT spectrum
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Non-perturbative

qT
d�

dqT
=
��

i=1

�i
s

2i�1�

j=0

lnj qT

mH
+O(q2

T )

Resummation

Fixed Order
qT

d�

dqT
= �sh1 + �2

sh2 + �3
sh3 + . . .

LO NLO NNLO

Transition Region

nonsingular
}

Higgs recoils against Jets

H
8T

pad
aged.P pf qifPJet

Jet

gluon fusion

qT � mH

qT � mH
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W (xa, xb,mH ,�b) =
���CV

�
mt,mH , µ

����
2
S(�b, µ, �)B��

g/N1
(xa, Q,�b, µ, �)B��

g/N2
(xb, Q,�b, µ, �)

B��
g/N (x,Q,�b, µ, �) =

�

k

�
d�

�
I��

gk

�x

�
,�b, µ, �

�
fk/N (�, µ) +O

�
�2

QCD
�b 2

�

CV

S

f

f

I

I

µ
�

µ = invariant mass scale
� = “rapidity” RGE scale

(dimension-1)

d2�

d2�qT
=

�
dxadxb �0�

�
xaxb �

m2
H

s

��
d2�b

(2�)2
ei�b·�qT W

�
xa, xb,mH ,�b

�
+

d2�

d2�qT

����
non�sing.

Small qT  factorization in SCET

Chiu, Jain, Neill, Rothstein (1202.0814)

3 loop anomalous dimensions
Perturbative Ingredients from the literature:

3 loop hard and soft functions, 2 loop beam fn + 3 loop logs

In particular 3-loop rapidity anom.dim calculation:
Li, Neill, Zhu (1604.00392, 1604.01404)
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W (xa, xb,mH ,�b) =
���CV

�
mt,mH , µ

����
2
S(�b, µ, �)B��

g/N1
(xa, Q,�b, µ, �)B��

g/N2
(xb, Q,�b, µ, �)

CV

S

f

f

I

I

µ
�

Single Scale Functions:

ln(b2µ2)

ln(b2⌫2)ln(b2µ2)

hard function

beam function

soft function

ln
Q2

µ2

ln
Q2

�2

Small qT  factorization in SCET
d2�

d2�qT
=

�
dxadxb �0�

�
xaxb �

m2
H

s

��
d2�b

(2�)2
ei�b·�qT W

�
xa, xb,mH ,�b

�
+

d2�

d2�qT

����
non�sing.

lnW = L
�

k

(�sL)k +
�

k

(�sL)k + �s

�

k

(�sL)k + �2
s

�

k

(�sL)kResummation:

LL NLL NNLL N3LLL = ln(mHb)
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FIG. 2. Comparison of full fixed-order spectrum, the singu-
lar distribution, and the non-singular distribution through to
NNLO. Here d�n/dpT ⇠ O(pT ).

and antiquarks of all light flavours). We point out that185

the (numerically subdominant) qq channel turns out to186

be the numerically most challenging, since contributions187

from valence-valence scattering favor events with higher188

parton-parton center-of-mass energy than in any of the189

other channels. The excellent agreement between fixed-190

order perturbation theory and SCET-predictions for the191

singular terms serves as a very strong mutual cross check192

of both approaches. It demonstrates that our calculation193

of the non-singular terms is reliable over a broad range in194

pT , thereby enabling a consistent matching of the NNLO195

and N3LL predictions.196197

Matching and results.— For a reliable description of
the transverse-momentum spectrum, the resummation of
large logarithms in d�s/dp2T has to be turned o↵ at large
pT . This can be seen clearly from Fig. 2, which depicts
the full fixed-order spectrum, the singular distribution
only, and the non-singular distribution, all through to
NNLO. At pT ⌧ 50 GeV, the singular distribution dom-
inates the fixed-order cross section, and the resummation
of higher order logarithms is necessary. Around 50 GeV,
the singular and non-singular distribution become com-
parable, and resummation has to be turned o↵. There
are several di↵erent prescriptions on how to turn o↵ the
resummation [11, 15, 22, 64–68]. In this letter, we fol-
low Ref. [15] by introducing b and pT dependent profile
functions, defining

⇢(b, pT ) = ⇢l

h
1� tanh

⇣
4s
⇣pT

t
� 1

⌘⌘i

+ ⇢r

h
1 + tanh

⇣
4s
⇣pT

t
� 1

⌘⌘i
, (12)

where ⇢(b, pT ) is used for µs = µs(b, pT ) = µB , ⌫s =198

⌫s(b, pT ), and µh = µh(pT ), which appear in Eq. (3).199

⇢l is the initial scale for each profile, taken to be the200

canonical scales in Eq. (7) so that at small pT the large201

FIG. 3. The Higgs-boson transverse momentum distribution
matched between FO and SCET. Dashed lines indicate cen-
tral scales of mH/2 and matching profile centered at 30 GeV.
The theoretical uncertainties are estimated by taking the en-
velope of all scale and profile variations (see text). Ratio
plots in the lower panel presents the scale and profile varia-
tion with respect to the central result for NLO+NNLL (green
dash line).

logarithms are resummed. ⇢r is the final scale for each202

profile, which is chosen to be µh = µB = µs = µF = µR,203

while for ⌫s it is mH . The parameters s and t govern204

the rate of transition between the fixed order result and205

the resummation, and also the precise transverse momen-206

tum t where this transition occurs. In our calculation, we207

choose s = 1, and t = 20, 25, 30, 35, 40 GeV to estimate208

the uncertainties from di↵erent profiles. The uncertain-209

ties for the final resummed + fixed-order prediction are210

estimated by factor of 2 variations of i) ⇢r for µh about211

mH and 2µF = 2µR about mH (varied simultaneously),212

and ii) the two ⇢ls for µB = µs and ⌫s about b0/b (var-213

ied independently). We always fix ⌫B = mH . We take214

the envelope of the resulting 55 curves as the uncertainty215

band at each order. Further uncertainties in our cal-216

culation include the missing four-loop cusp anomalous217

dimension and the treatment of non-perturbative correc-218

tions at large b. They are estimated to be negligible219

compared with the aforementioned scale uncertainties.220

Additional independent uncertainties related to the par-221

ton distributions and value of ↵s(mZ) should be included222

for a detailed phenomenological study.223

The final matched transverse momentum spectrum is224

shown in Fig. 3. We plot the distributions at LO+NLL,225

NLO+NNLL, and NNLO+N3LL. We also plot the un-226

matched NNLO distribution. At small transverse mo-227

mentum, the fixed order distribution displays unphysical228

behavior, due to the presence of large logarithms. We see229

that the matched distribution smoothly merges into the230

fixed order cross-section around 40 GeV, and that the231

large 
logs

fixed 
order

pH
T [GeV]

Transition Region

d�

dqT
=

d�resum

dqT
+

d�FO

dqT
� d�sing

dqT

resummation fixed
order

singular
(overlap)}

nonsingular

use profiles to smoothly
  turn off resummation 

µi(b, qT ), �i(b, qT )

qT [GeV]

guaranteed that shape dependence 
only effects terms beyond N3LL+NNLO



23

New N3LL+NNLO result 4

FIG. 2. Comparison of full fixed-order spectrum, the singu-
lar distribution, and the non-singular distribution through to
NNLO. Here d�n/dpT ⇠ O(pT ).
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and N3LL predictions.196197

Matching and results.— For a reliable description of
the transverse-momentum spectrum, the resummation of
large logarithms in d�s/dp2T has to be turned o↵ at large
pT . This can be seen clearly from Fig. 2, which depicts
the full fixed-order spectrum, the singular distribution
only, and the non-singular distribution, all through to
NNLO. At pT ⌧ 50 GeV, the singular distribution dom-
inates the fixed-order cross section, and the resummation
of higher order logarithms is necessary. Around 50 GeV,
the singular and non-singular distribution become com-
parable, and resummation has to be turned o↵. There
are several di↵erent prescriptions on how to turn o↵ the
resummation [11, 15, 22, 64–68]. In this letter, we fol-
low Ref. [15] by introducing b and pT dependent profile
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⌫s(b, pT ), and µh = µh(pT ), which appear in Eq. (3).199

⇢l is the initial scale for each profile, taken to be the200
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logarithms are resummed. ⇢r is the final scale for each202

profile, which is chosen to be µh = µB = µs = µF = µR,203

while for ⌫s it is mH . The parameters s and t govern204

the rate of transition between the fixed order result and205

the resummation, and also the precise transverse momen-206

tum t where this transition occurs. In our calculation, we207

choose s = 1, and t = 20, 25, 30, 35, 40 GeV to estimate208

the uncertainties from di↵erent profiles. The uncertain-209

ties for the final resummed + fixed-order prediction are210

estimated by factor of 2 variations of i) ⇢r for µh about211

mH and 2µF = 2µR about mH (varied simultaneously),212

and ii) the two ⇢ls for µB = µs and ⌫s about b0/b (var-213

ied independently). We always fix ⌫B = mH . We take214

the envelope of the resulting 55 curves as the uncertainty215

band at each order. Further uncertainties in our cal-216

culation include the missing four-loop cusp anomalous217

dimension and the treatment of non-perturbative correc-218

tions at large b. They are estimated to be negligible219

compared with the aforementioned scale uncertainties.220

Additional independent uncertainties related to the par-221

ton distributions and value of ↵s(mZ) should be included222

for a detailed phenomenological study.223

The final matched transverse momentum spectrum is224

shown in Fig. 3. We plot the distributions at LO+NLL,225

NLO+NNLL, and NNLO+N3LL. We also plot the un-226

matched NNLO distribution. At small transverse mo-227

mentum, the fixed order distribution displays unphysical228

behavior, due to the presence of large logarithms. We see229

that the matched distribution smoothly merges into the230

fixed order cross-section around 40 GeV, and that the231

Chen, Gehrmann, Glover, Huss,
Li, Neill, Schulze, IS, Zhu (1805.00736) 
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Compared to qT spectrum from ATLAS with 
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Figure 13: The fiducial di↵erential cross sections measured as a function of (a) p��T , (b) |y�� |, (c) p j1
T , and

(d) Nb-jets. The Nb-jets distribution is measured in a fiducial phase space requiring at least one central jet (pT >
30 GeV, |y | < 2.5) and no electrons or muons. All di↵erential measurements are compared to the default MC
prediction, with gluon fusion modeled using Powheg NNLOPS and other Higgs production processes X H using
the predictions described in Section 4. In addition, the p��T distribution is compared to (X H plus) the gluon-fusion
prediction NNLOjet+SCET; the |y�� | distribution is compared to SCETlib+MCFM8; and the p j1

T distribution is
compared to NNLOjet and SCETlib(STWZ), all described in Section 9.4. The theoretical uncertainty of the Nb-jets
prediction is not well understood, and is therefore omitted.
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This note reports measurements of Higgs boson properties in the two-photon final state us-
ing 79.8 fb�1 of data recorded at

p
s = 13 TeV by the ATLAS experiment at the Large

Hadron Collider. The cross sections of Higgs boson production through gluon–gluon fusion,
vector-boson fusion, and in association with a vector boson or a top-quark pair are measured.
Measurements of the Higgs boson production divided further into kinematic regions, called
simplified template cross sections, are also reported. Additionally, the cross section for the
production of the Higgs boson decaying to two isolated photons is measured in a fiducial
phase space designed to closely match the ATLAS detector acceptance, and is found to be
60.4 ± 6.1 (stat.) ± 6.0 (exp.) ± 0.3 (theo.) fb, in agreement with the Standard Model pre-
diction of 63.5 ± 3.3 fb. Finally, the fiducial cross section is measured di↵erentially in bins
of several kinematic observables with sensitivity to properties of the Higgs boson. Among
these, the number of b-jets produced in association with the Higgs boson is measured to
probe Higgs production in association with heavy flavor hadrons. No significant deviations
between the observed data and the Standard Model prediction are observed.
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Higgs With and Without Jets
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[Stewart, FT, Walsh, Zuberi]

Resummation yields much improved precision: small uncertainties and
good convergence

I Most precise predictions to date
I Jet clustering uncertainties are not included but appear to be under control

[Alioli, Walsh; Dasgupta et al.]
I PDF+↵s uncertainties are not shown (become relevant now)
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Factorization:

Higgs With and Without Jets
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Figure 13: The fiducial di↵erential cross sections measured as a function of (a) p��T , (b) |y�� |, (c) p j1
T , and

(d) Nb-jets. The Nb-jets distribution is measured in a fiducial phase space requiring at least one central jet (pT >
30 GeV, |y | < 2.5) and no electrons or muons. All di↵erential measurements are compared to the default MC
prediction, with gluon fusion modeled using Powheg NNLOPS and other Higgs production processes X H using
the predictions described in Section 4. In addition, the p��T distribution is compared to (X H plus) the gluon-fusion
prediction NNLOjet+SCET; the |y�� | distribution is compared to SCETlib+MCFM8; and the p j1

T distribution is
compared to NNLOjet and SCETlib(STWZ), all described in Section 9.4. The theoretical uncertainty of the Nb-jets
prediction is not well understood, and is therefore omitted.
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diphoton decay channel using 80 fb�1 of pp

collision data at
p
s = 13 TeV with the ATLAS
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The ATLAS Collaboration

This note reports measurements of Higgs boson properties in the two-photon final state us-
ing 79.8 fb�1 of data recorded at

p
s = 13 TeV by the ATLAS experiment at the Large

Hadron Collider. The cross sections of Higgs boson production through gluon–gluon fusion,
vector-boson fusion, and in association with a vector boson or a top-quark pair are measured.
Measurements of the Higgs boson production divided further into kinematic regions, called
simplified template cross sections, are also reported. Additionally, the cross section for the
production of the Higgs boson decaying to two isolated photons is measured in a fiducial
phase space designed to closely match the ATLAS detector acceptance, and is found to be
60.4 ± 6.1 (stat.) ± 6.0 (exp.) ± 0.3 (theo.) fb, in agreement with the Standard Model pre-
diction of 63.5 ± 3.3 fb. Finally, the fiducial cross section is measured di↵erentially in bins
of several kinematic observables with sensitivity to properties of the Higgs boson. Among
these, the number of b-jets produced in association with the Higgs boson is measured to
probe Higgs production in association with heavy flavor hadrons. No significant deviations
between the observed data and the Standard Model prediction are observed.
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NNLL results are available for exclusive jets

NLL results and Data are available for inclusive jets
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(a) Unnormalized jet mass spectrum for quark and gluon jets
at NNLL. The uncertainties are sizable even at NNLL.
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(b) Normalized jet mass spectrum for quark and gluon jets at
NNLL. Compared to Fig. 4(a), the normalization significantly
reduces the perturbative uncertainties.
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(c) Convergence of the resummed calculation for gluon jets.
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(d) Convergence of the resummed calculation for quark jets.
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(e) Individual scale variations that enter the uncertainty estimate
for gluon jets at NNLL. Shown are the variations relative to
the central NNLL curve.
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(f) Individual scale variations that enter the uncertainty estimate
for quark jets at NNLL. Shown are the variations relative to
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FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula
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FIG. 4: Perturbative uncertainties and convergence for the jet mass spectrum in gg → Hg and gq → Hq with default inputs.

There are several classes of perturbative scale uncer-
tainties, the “Fixed Order” scale variation that is cor-
related with the total cross section, the “Beam” scale
variation from varying µB and µSB that is related to the

presence of the jet veto, the “Jet” scale variation from
varying µJ and µSJ that is related to the jet mass mea-
surement, and the uncertainty from “r” that is related
to the perturbative freedom in the refactorized formula
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Soft Drop Larkoski, Marzani, Soyez, Thaler (1402.2657)
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Soft Drop Factorization Frye, Larkoski, Schwartz, Yan (1603.09338)
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Fig. 2 Resummed and match theoretical predictions for the Soft Drop jet mass distribution, for two different values of the angular exponent b = 1
(left) and b = 2 (right), zcut = 0.1 and R = 0.8. The colours correspond to different accuracy of the calculation, as detailed in the legend.

where the 1 in the numerator corresponds to the pt shift and
the fm,i term corresponds to mass-shift effects, with

fm,q =
1+3zSD +2z2

SD(3LSD �2)
4

, (14)

fm,g =
1+2zSD +3z2

SD(2LSD �1)
4

+
n f TR

CA
zSD(1� zSD).

This time, both sources of corrections give an effect propor-

tional to LUE
pt

� pt
m

� 2b�4
2+b , which increase with b and has the

expected LUE pt/m2 behaviour in the limit b ! •.
In Fig. 1, we compare our analytic findings (dashed lines)

with the Monte-Carlo simulations, obtained with Pythia 8.223
[20] (Monash 13 [21] tune, solid lines). We consider both
hadronisation corrections (left) and UE effects (right), for a
range of b values. UE effects are seen to be much smaller
than hadronisation corrections. In the region where Lhadr,UE ⌧
m ⌧ pt , our analytic calculation captures the main features
observed in the simulations, including the increase with b
and the global trend in r . At smaller mass, Pythia simula-
tions exhibit a peak in the hadronisation corrections which
is beyond the scope of our power-correction calculation.

Even if the above analytic approach to estimating NP ef-
fects is helpful for a qualitative understanding, it is unclear
how reliable it would be for phenomenology. For example,
hadron masses, which are neglected here, would have an ad-
ditional effect, even at large mass. Thus, the analytic esti-
mates can, at best, be trusted up to a fudge factor and ana-
lytic results can not be trusted at small mass (see also [22]).

As for our mMDT calculation [5], for our final predic-
tions, we have therefore decided to estimate NP corrections
using different Monte-Carlo simulations: Herwig 6.521 [23]
with the tune AUET2 [24], Pythia 6.428 [25] with the Z2 [26]
and Perugia 2011 [27] tunes, and Pythia 8.223 [20] with

the 4C [28] and Monash 13 [21] tunes. For each Monte-
Carlo, we compute the ratio between the full simulation and
the parton level. The average result is taken as the average
NP correction, and the envelope as the uncertainty which is
added in quadrature to the perturbative uncertainty.

Final predictions and conclusions. Our final predictions, are
presented for b = 1 (left) and b = 2 (right) in Fig 2. To
highlight our key observations, we present our final results
at NLL matched to NLO and including NP corrections (la-
belled NLL+NLO+NP), as well as pure perturbative results
(NLL+NLO) and results obtained when matching to LO only
(NLL+LO). The most striking feature that we observe is that
matching to NLO not only affects quite significantly the cen-
tral value of our prediction, but also significantly reduces the
uncertainty across the entire spectrum.

Then, we see that NP corrections remain small over a
large part of the spectrum, although they start being sizeable
at larger mass when the angular exponent b increases. The
fact that Soft Drop observables can be computed precisely in
perturbative QCD, with small NP corrections, makes them
interesting for further phenomenological studies, including
other observables like angularities or attempts to extract the
strong coupling constant from fits to the data.

Finally, we note that these predictions have recently been
compared to experimental results obtained by the ATLAS
collaboration in Ref. [7]. A good overall agreement between
data and theory is observed, especially in the region where
NP corrections are small.
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Figure 11: NLL matched (left) and NNLL matched (right) distributions for hardest jet e(2)2

in pp ! Z + j events with soft drop grooming zcut = 0.1 and � = 0 and � = 1. Estimates

of theoretical uncertainties are represented by the shaded bands. For soft drop with � = 1,

the dotted lines represent the extent of the theoretical uncertainties when the variation of

the two-loop non-cusp anomalous dimension is included. The distributions in the two upper

figures are normalized to the total cross section (in femtobarns), while in the bottom figures,

the distributions integrate to the same value over the range e(2)2 2 [0.001, 0.1]. Note the

reduction in uncertainties as one moves from NLL to NNLL, and also as one considers the

normalized distribution.

NNLL, we have also explicitly shown the additional uncertainty due to the two-loop non-cusp

anomalous dimension of the collinear-soft function. In going from NLL to NNLL accuracy,

the relative size of the scale uncertainty bands decreases by about a factor of 2 or 3 for both

choices of normalization of the distributions. However, normalizing the distributions over

the range e(2)2 2 [0.001, 0.1] dramatically reduces residual scale uncertainties; at NNLL, these
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Figure 3: The unfolded log10(⇢2) distribution for anti-k
t

R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].
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Figure 3: The unfolded log10(⇢2) distribution for anti-k
t

R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].
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Figure 12: Normalized cross section for the groomed jets for two pT bins. The data are shown by
the black points, with dark grey bands for the statistical uncertainty (Stat. unc.) and with light
grey bands for the total uncertainty (stat.+sys. unc., added in quadrature). The predictions
from PYTHIA8, HERWIG++, and POWHEG + PYTHIA are shown with dashed black, dash-dot-
dotted magenta, and dash-dotted green histograms, respectively, with no uncertainties shown.
The predictions from Ref. [17] (Frye et. al.) are shown with blue squares. The uncertainties in-
clude scale variations and an estimate of nonperturbative effects. The predictions from Ref. [18]
(Marzani et. al.) are shown with red triangles. The uncertainties only include effects from scale
variations, since nonperturbative corrections have been considered directly in the calculation.
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Hoang, Mantry, Pathak, Stewart  (1708.02586)

top decay products & radiation

left over soft radiation 
R

Figure 23. E↵ect of adding hadronization and MPI without (left) and with (right) soft drop grooming.

4.6 Hadronization and MPI

When MPI is added the soft drop pp result has a peak that is shifted by 4.5GeV. This is

shown most cleanly in Fig. 23 (left panel) where for pp collisions we display the no soft drop

hadronization result (blue) and hadronization+MPI result (red), including also here the purely

partonic Pythia8 result (green), and listing the positions of the various peak locations in GeV.

The shift from adding MPI to the hadronization result is about a factor of two larger than the

' 2.5GeV shift between the partonic and hadronic peak positions.

After soft drop the analogous pp results are shown in Fig. 23 (right panel). Here we observe

a significantly smaller shift between both the partonic and hadronization results, ' 1.0GeV

and between the hadronization and hadronization+MPI results, ' 1.1GeV. The latter result

is quite important; since the UE / MPI e↵ects must be modeled in a manner that goes beyond

the factorization theorem this reduction in the magnitude of their contribution provides a

significant decrease in the associated uncertainty. At the level of the analysis carried out here

we make a rough estimate that the factorization based model for including UE e↵ects, through

modifying the moment parameters ⌦n ! ⌦MPI
n , has a 30% uncertainty. This approximation for

the residual uncertainty may actually be somewhat conservative since this modeling agrees well

with Pythia8’s MPI model with much higher accuracy. Nevertheless we feel it is appropriate

to be conservative when relying on model dependent methods. This rough estimate yields a

0.3GeV uncertainty estimate for the modeling of MPI. With further dedicated studies of MPI

in samples of top, massless quark or b-jets, we may gain the needed confidence to make this

rough uncertainty estimate more precise in the future.

4.7 pT dependence of the pp ! tt̄ jet mass spectrum

In Fig. 24 we study the pT dependence of the soft-dropped spectrum predicted by Pythia8,

for four di↵erent pT bins. In the first panel we see that there is essentially no pT dependence

of the spectrum in the partonic Pythia results. The second panel includes hadronization,

and we begin to see pT dependent shifts between the bins at a very small 0.1–0.2GeV level.

These small shifts are in agreement with the dramatically reduced pT dependence predicted

by the soft drop factorization theorems. Indeed, these small shifts are compatible with the

lack of pT dependence predicted by Eq. (5.24). They are also compatible with Eq. (5.25) if the

⇤QCD is replaced by ⌦(�)
1 ⇠ 1GeV. Finally the third panel of Fig. 24 adds MPI e↵ects. Once
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Figure 23. E↵ect of adding hadronization and MPI without (left) and with (right) soft drop grooming.
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partonic Pythia8 result (green), and listing the positions of the various peak locations in GeV.

The shift from adding MPI to the hadronization result is about a factor of two larger than the
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After soft drop the analogous pp results are shown in Fig. 23 (right panel). Here we observe

a significantly smaller shift between both the partonic and hadronization results, ' 1.0GeV

and between the hadronization and hadronization+MPI results, ' 1.1GeV. The latter result

is quite important; since the UE / MPI e↵ects must be modeled in a manner that goes beyond

the factorization theorem this reduction in the magnitude of their contribution provides a

significant decrease in the associated uncertainty. At the level of the analysis carried out here

we make a rough estimate that the factorization based model for including UE e↵ects, through

modifying the moment parameters ⌦n ! ⌦MPI
n , has a 30% uncertainty. This approximation for

the residual uncertainty may actually be somewhat conservative since this modeling agrees well

with Pythia8’s MPI model with much higher accuracy. Nevertheless we feel it is appropriate

to be conservative when relying on model dependent methods. This rough estimate yields a

0.3GeV uncertainty estimate for the modeling of MPI. With further dedicated studies of MPI

in samples of top, massless quark or b-jets, we may gain the needed confidence to make this

rough uncertainty estimate more precise in the future.

4.7 pT dependence of the pp ! tt̄ jet mass spectrum

In Fig. 24 we study the pT dependence of the soft-dropped spectrum predicted by Pythia8,

for four di↵erent pT bins. In the first panel we see that there is essentially no pT dependence

of the spectrum in the partonic Pythia results. The second panel includes hadronization,

and we begin to see pT dependent shifts between the bins at a very small 0.1–0.2GeV level.

These small shifts are in agreement with the dramatically reduced pT dependence predicted

by the soft drop factorization theorems. Indeed, these small shifts are compatible with the

lack of pT dependence predicted by Eq. (5.24). They are also compatible with Eq. (5.25) if the

⇤QCD is replaced by ⌦(�)
1 ⇠ 1GeV. Finally the third panel of Fig. 24 adds MPI e↵ects. Once
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Factorization formula can also be derived for 
  groomed jet mass for this case

Figure 34. Comparison of Pythia8 without and with MPI to the “decay” and “high-pT ” factorization
theorems at NLL. The mt parameter is in the MSR mass scheme for the factorization theorems here.
The top-mass parameter in Pythia8 is referred to as mMC

t .

Ref. [30] carried out a more sophisticated analysis of theoretical uncertainties, and correlations

between uncertainties than we will carry out here. (In the future our exploratory analysis

should be extended to this level of analysis, in particular once full NNLL results for the soft

drop top cross section are available.) In particular we do not intend to quote here the final

uncertainties for the fit parameters, but will try to give some indication for what one may

roughly anticipate the size of these uncertainties to be.

6.1 Soft Drop Pythia and Factorization Comparison

In Fig. 34 we show a comparison of Pythia8 results with the “decay” and “high-pT ” fac-

torization formulae. As fit parameters in the factorization results we take the MSR mass

mMSR
t ⌘ mMSR

t (R = 1GeV), and the two non-perturbative parameters ⌦(�)
1 and x(�)2 . We do a

simultaneous fit of these parameters to results for the pT � 750GeV and pT � 1000GeV bins.

For the fit range we take MJ 2 [173, 180]GeV, over which the curves are also normalized. To

maximize the use of shape information we compare cross sections for 10 bins in this range,

using a �2 function that provides more weight to the peak of the distribution to simulate the

fact that experimental uncertainties are expected to be smaller there. To obtain the best fit

values we do a scan over values of the parameters with step size of 0.1GeV for mt and ⌦(�)
1 ,

and of step size of 0.1 for x(�)2 (also including the value x(�)2 = 0.05).

In the upper two plots of Fig. 34 we include only hadronization in Pythia8, whereas the

lower two plots also include MPI. The orange band shows the perturbative NLL uncertainty

on the “decay” result, from varying scales in the factorization theorem through our profile
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For the fit range we take MJ 2 [173, 180]GeV, over which the curves are also normalized. To

maximize the use of shape information we compare cross sections for 10 bins in this range,

using a �2 function that provides more weight to the peak of the distribution to simulate the

fact that experimental uncertainties are expected to be smaller there. To obtain the best fit

values we do a scan over values of the parameters with step size of 0.1GeV for mt and ⌦(�)
1 ,

and of step size of 0.1 for x(�)2 (also including the value x(�)2 = 0.05).
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on the “decay” result, from varying scales in the factorization theorem through our profile

– 71 –

Enables top mass measurement
  in a short distance scheme
  with control over soft effects

Tested by NLL 
comparison with Pythia



Power Corrections

�
d�

d�
=

�

i,j

c(0)
i,j �i

s lnj� +
�

i,j

c(1)
i,j �i

s � lnj� + . . .

� � 1

EFT framework (SCET) is ideal for studying power corrections

Leading Power Next to Leading Power

logs generated by power 
corrections to
soft and collinear limits

Interesting:

• Formal questions:  Factorization?  Universality of functions? 
                           Universality of anomalous dimensions?

Sudakov suppression at subleading power?

•
Improve Fixed Order Calculations (subtractions)

Examples where subleading power is needed (high precision, B’s)

•
•

What is subleading power good for?

High precision phenomenology

Log enhancements & resummation

⇧ Sudakov suppression for subleading power ( ln ⌧
⌧ vs lnk ⌧)

⇧ Unsolved formal problem

Subtractions for fixed order NNLO (see Ian Moult’s talk)

B-physics

⇧ � ⇠ ⇤QCD

mb/2
⇠ 0.2 =) Subleading power important

⇧ Non perturbative power corrections
⇧ Subleading SCET results available [Stewart, Bauer, Pirjol] [Beneke, Feldman, . . . ]

[Neubert, Becher, Paz, Hill] Tackmann, Mannel, Rothstein, Leibovich, . . .
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N-Jettiness Subtraction Method for NNLOApplication: Fixed Order Subtractions

IR divergences in fixed order calculations can be regulated using event
shape observables.
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configuration.
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want
(N)NLO

resolved, only need 
extra emission at (N)LO

predict with
factorization

(for N jets)

error goes like: ��NLO(�cut) � �s �cut ln �cut

��NNLO(�cut) � �2
s �cut ln3 �cut

can improve factorization
result by computing these
terms

rule of thumb:  each log computed gains an order of magnitude in 
                       precision (or computing time) [MCFM @ NNLO]
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FIG. 9. Power corrections ��(⌧cut) for the O(↵2
s) contributions in the qq̄ channel (top row), the qg channel (middle row), and

the sum of both channels (bottom row). The plots on the right are equivalent to those on the left and show the absolute value
on a logarithmic scale.

In Figs. 6 and 7 we show the nominal fit results for
both channels at NLO and NNLO, respectively. The
black points show the nonsingular data. The statistical
uncertainties are (much) smaller than the size of the data
points, except for the lowest points in the NNLO data,

where the error bars become visible. (This means that
while in all cases the fit quality is good, this fact cannot
be judged by eye, so these plots should just be taken as
illustration.) The plots on the left are on a linear scale
to show the shape and relative signs of the contributions,

11
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FIG. 7. Illustration of the fit to the O(↵2
s) nonsingular in the qq̄ channel (top row) and the qg channel (bottom row). The plots

on the right are equivalent to those on the left and show the absolute value on a logarithmic scale. A detailed explanation of
the fit function, as well as the plotted curves, is given in the text.

coe�cients as additional nuisance parameters in the fit.
With the very precise data needed to get a precise de-
termination of the a

i

coe�cients, it is essential to do so,
because even in a region in ⌧ where the higher-power con-
tributions might naively seem negligible, they can have
a nontrivial influence on the fit as soon as their nomi-
nal contribution becomes comparable with the statistical
uncertainties in the data. (In other words, the correlated
theory uncertainties must be taken into account as soon
as they become of similar size to the statistical uncertain-
ties.) At NLO, the data is precise enough to require (or
allow) including both b

i

and c
i

coe�cients. At NNLO,
we include b3 and b2 since we are interested in unbiased
results for a3 and a2. (The NNLO data is not precise
enough to require or allow including corresponding b1
and b0 terms.)

Regarding the fit range, in principle the best sensitivity
comes from the smallest possible ⌧ values so we always fit
down to the lowest available ⌧ values. However, the data
is much less precise toward smaller ⌧ values due to the
larger numerical cancellations, and much more precise to-

ward larger ⌧ values. The precision in the fit results thus
benefits significantly as the fit range is extended toward
large ⌧ , but at the same time is in danger of becoming
biased. To achieve a precise but still unbiased fit, we
increase the fit range until including an additional data
point would reduce the standard p-value of the fit. Be-
yond this point, the p-value rapidly deteriorates giving a
clear indication that the fit becomes biased and the fit
model is not able to describe the data any longer. As a
cross check, we also check that including an additional
coe�cient for the selected fit range does not increase the
p-value of the fit (while it does so when including the next
data point). As further cross checks on the fit results, we
divide the data into two independent subsets and perform
separate fits for each subset. We also perform several ad-
ditional fits with both fewer and more coe�cients, using
the same procedure to select the fit range in each case,
and check that we find compatible fit results.

As a check of our calculation we first fit the LL coef-
ficients (a1 at NLO and a3 at NNLO). The results from
our default fit for both qq̄ and qg channels are given in

�2
s � ln3 �calculation of: �s � ln � and �s �

Moult, Rothen, IS, Tackmann, Zhu (1612. 00450)

Ebert, Moult, IS, Tackmann, Vita, Zhu (1807.10764)
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Figure 5. Same as fig. 3 for the hadronic T definition.

The NLP power corrections for this configuration for the leptonic T definition were extracted

numerically in ref. [59]. The results for both leptonic and hadronic definitions for all partonic

channels are collected and compared to our analytic predictions in table 2. In all cases,

excellent agreement is observed within the fit uncertainties.

In fig. 7 we show as the solid red curve a fit to the full nonsingular result at NLO (black

points), which is compared with the LL and NLL predictions in dashed green and dashed blue,

respectively. Once again this solid red fit curve is obtained using the form in eq. (7.1) with

a1 and a0 fixed by the analytic result in table 2, and agrees very well with the corresponding

result obtained in ref. [59] where a0 was a parameter in the fit. In all cases, we find that the

NLL result provides a good description of the full nonsingular cross section. This is expected

since the NLL results includes all NLP terms in the NLO cross section. We see, however,

that particularly for the gq + qg channel, the NLL result for a0 is required to get a good

description, and the LL power correction a1 alone is not su�cient. Thus the gq+ qg channel

provides an example where simply looking at the size of the residual nonsingular result after

subtracting the a1 term does not su�ce to validate the value of this coe�cient.

In fig. 8, we show a plot of the corresponding power corrections for the cumulant,��(⌧cut),
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(validated with MCFM)
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Figure 4. Same as fig. 2 for the hadronic T definition.

both leptonic and hadronic T normalized to the LO rapidity spectrum. We can clearly see

the exponential enhancement for the hadronic definition at large |Y |. For the qg channel, the

asymmetric behavior in rapidity is expected from its analytic result. The result for the gq

channel corresponds to taking Y ! �Y , such that their sum is symmetric in rapidity. While

the leptonic definition does not su↵er from the exponential enhancement of the hadronic

definition, it still exhibits a substantial increase at large positive Y in the qg channel, as well

as a suppression at large negative Y . This is due to the substantially di↵erent x-dependence of

the quark-gluon luminosity (and its derivative) compared to the qq̄ luminosity in the LO result

to which we normalize. Knowing the NLL contribution to the power corrections di↵erential

in rapidity enables one to explicitly account for this e↵ect in the subtractions.

7.2 Gluon-Fusion Higgs Production

Next, we consider gluon-fusion Higgs production. We take pp ! H at Ecm = 13TeV with

an on-shell, stable Higgs boson with mH = 125GeV, integrated over all Y . We use the

MMHT2014 NNLO PDFs [81], with fixed scales µr = µf = mH , and ↵s(mH) = 0.1126428.

– 35 –
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First Subleading Power Resummation for an Event ShapeLL Resummation for Thrust at NLP

Analogously to what we have seen at FO, power corrections arise from two
distinct sources:

Power corrections to scattering amplitudes.
Power corrections to kinematics.

Power corrections to scattering amplitudes can be computed from
subleading SCET operators [Moult, Stewart, GV]

They give rise to new jet and soft functions, whose renormalization was not
previously known
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Renormalization

�!

The subleading jet and soft functions satisfy a 2 ⇥ 2 mixing RG

Solving this equation to renormalize the operators, and resum
subleading power logarithms.
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They are power suppressed due to ✓(⌧) ⇠ 1 instead of �(⌧) ⇠ 1/⌧ .

We find this type of mixing is a generic behavior at subleading power.
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LL Resummation for Thrust at NLP

Complete result given by sum of two contributions.

Both have same Sudakov =) can be directly added.

Obtain the LL resummed result for pure glue H ! gg thrust
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Provides the first all orders resummation
for an event shape at subleading power.

Very simple result. Subleading
power LL driven by cusp anomalous
dimension!

[Moult, Stewart, Vita, Zhu]
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Other applications: Bootstrap and NLP log divergences

Bootstrap
Bootstrap approaches aim to completely
reconstruct amplitudes or cross sections
from limits.

Most success in planar N = 4.

Some recent
applications in QCD.

Taming log divergence of NLP
Fixed order power correction has
(integrable) divergence

If LP is resummed and NLP is not,
(integrable) divergence dominates.
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of 6-Point MHV Remainder Function
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LL Resummation for Thrust at NLP

Analogously to what we have seen at FO, power corrections arise from two
distinct sources:

Power corrections to scattering amplitudes.
Power corrections to kinematics.

Power corrections to scattering amplitudes can be computed from
subleading SCET operators [Moult, Stewart, GV]

They give rise to new jet and soft functions, whose renormalization was not
previously known
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Summary:  
Precision QCD for LHC (Higgs qT)

Jet Mass Distribution

Soft Drop Groomed Jets

• Effective Field Theory is a 
   powerful tool for Jets

Power Suppressed Corrections

4

FIG. 2. Comparison of full fixed-order spectrum, the singu-
lar distribution, and the non-singular distribution through to
NNLO. Here d�n/dpT ⇠ O(pT ).

and antiquarks of all light flavours). We point out that185

the (numerically subdominant) qq channel turns out to186

be the numerically most challenging, since contributions187

from valence-valence scattering favor events with higher188

parton-parton center-of-mass energy than in any of the189

other channels. The excellent agreement between fixed-190

order perturbation theory and SCET-predictions for the191

singular terms serves as a very strong mutual cross check192

of both approaches. It demonstrates that our calculation193

of the non-singular terms is reliable over a broad range in194

pT , thereby enabling a consistent matching of the NNLO195

and N3LL predictions.196197

Matching and results.— For a reliable description of
the transverse-momentum spectrum, the resummation of
large logarithms in d�s/dp2T has to be turned o↵ at large
pT . This can be seen clearly from Fig. 2, which depicts
the full fixed-order spectrum, the singular distribution
only, and the non-singular distribution, all through to
NNLO. At pT ⌧ 50 GeV, the singular distribution dom-
inates the fixed-order cross section, and the resummation
of higher order logarithms is necessary. Around 50 GeV,
the singular and non-singular distribution become com-
parable, and resummation has to be turned o↵. There
are several di↵erent prescriptions on how to turn o↵ the
resummation [11, 15, 22, 64–68]. In this letter, we fol-
low Ref. [15] by introducing b and pT dependent profile
functions, defining

⇢(b, pT ) = ⇢l

h
1� tanh

⇣
4s
⇣pT

t
� 1

⌘⌘i

+ ⇢r

h
1 + tanh

⇣
4s
⇣pT

t
� 1

⌘⌘i
, (12)

where ⇢(b, pT ) is used for µs = µs(b, pT ) = µB , ⌫s =198

⌫s(b, pT ), and µh = µh(pT ), which appear in Eq. (3).199

⇢l is the initial scale for each profile, taken to be the200

canonical scales in Eq. (7) so that at small pT the large201
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FIG. 3. The Higgs-boson transverse momentum distribution
matched between FO and SCET. Dashed lines indicate cen-
tral scales of mH/2 and matching profile centered at 30 GeV.
The theoretical uncertainties are estimated by taking the en-
velope of all scale and profile variations (see text). Ratio
plots in the lower panel presents the scale and profile varia-
tion with respect to the central result for NLO+NNLL (green
dash line).

logarithms are resummed. ⇢r is the final scale for each202

profile, which is chosen to be µh = µB = µs = µF = µR,203

while for ⌫s it is mH . The parameters s and t govern204

the rate of transition between the fixed order result and205

the resummation, and also the precise transverse momen-206

tum t where this transition occurs. In our calculation, we207

choose s = 1, and t = 20, 25, 30, 35, 40 GeV to estimate208

the uncertainties from di↵erent profiles. The uncertain-209

ties for the final resummed + fixed-order prediction are210

estimated by factor of 2 variations of i) ⇢r for µh about211

mH and 2µF = 2µR about mH (varied simultaneously),212

and ii) the two ⇢ls for µB = µs and ⌫s about b0/b (var-213

ied independently). We always fix ⌫B = mH . We take214

the envelope of the resulting 55 curves as the uncertainty215

band at each order. Further uncertainties in our cal-216

culation include the missing four-loop cusp anomalous217

dimension and the treatment of non-perturbative correc-218

tions at large b. They are estimated to be negligible219

compared with the aforementioned scale uncertainties.220

Additional independent uncertainties related to the par-221

ton distributions and value of ↵s(mZ) should be included222

for a detailed phenomenological study.223

The final matched transverse momentum spectrum is224

shown in Fig. 3. We plot the distributions at LO+NLL,225

NLO+NNLL, and NNLO+N3LL. We also plot the un-226

matched NNLO distribution. At small transverse mo-227

mentum, the fixed order distribution displays unphysical228

behavior, due to the presence of large logarithms. We see229

that the matched distribution smoothly merges into the230

fixed order cross-section around 40 GeV, and that the231
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• The ungroomed case
pp ! jet +X
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Figure 3: The unfolded log10(⇢2) distribution for anti-k
t

R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].
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FIG. 9. Power corrections ��(⌧cut) for the O(↵2
s) contributions in the qq̄ channel (top row), the qg channel (middle row), and

the sum of both channels (bottom row). The plots on the right are equivalent to those on the left and show the absolute value
on a logarithmic scale.

In Figs. 6 and 7 we show the nominal fit results for
both channels at NLO and NNLO, respectively. The
black points show the nonsingular data. The statistical
uncertainties are (much) smaller than the size of the data
points, except for the lowest points in the NNLO data,

where the error bars become visible. (This means that
while in all cases the fit quality is good, this fact cannot
be judged by eye, so these plots should just be taken as
illustration.) The plots on the left are on a linear scale
to show the shape and relative signs of the contributions,
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