Charm Decay @ BESIII

Wang Bin-Long

University of Chinese Academy of Sciences, Beijing

(On behalf of the BESIII collaboration)

Outline

- Introduction
 - The BESIII experiment
 - Production new threshold and tag technique
- (Semi-)Leptonic Decays
 - Study of $D^+ \rightarrow \mu \nu$
 - Study of $D_s^+ \rightarrow \mu \nu$
 - Study of $D^+ \rightarrow \tau \nu$
 - Study of $D^0 \rightarrow K^-\mu^+\nu$
 - Study of $D_s^+ \rightarrow \eta e^+ \nu$
 - Study of $D_s^+ \rightarrow K^{(*)0}e^+\nu_e$
- Hadronic Decay
 - Study of $D_s^+ \rightarrow p \overline{n}$,
 - Study of $D_s^+ \rightarrow \omega \pi^+$ and ωK^+
- Λ_c⁺ Decays
 - Study of $\Lambda_c^+ \rightarrow \Lambda X$
 - Study of $\Lambda_c^+ \rightarrow e^+ \nu_e X$

The **BESIII** experiment

Beijing-Electron-Positron Collider II (BEPCII)

- $-e^+e^-$ collisions with $\sqrt{s} = 2.0 4.6$ GeV
- Direct production of charmonia
- Designed Luminosity

$$\mathcal{L} = 1 \times 10^{33} cm^{-2} s^{-1}$$
 was achieved in April 2016.

B€S detector

- 93% coverage of the full solid angle
- Main drift chamber $\sigma_{\rm p}/{\rm p}=0.5\%@1{\rm GeV}$
- Time-of-flight system $\sigma_T = 100 \mathrm{ps}$ in Barrel
- Elmg. Calorimeter $\Delta E/E = 2.5\%$ @1GeV
- Superconducting 1T magnet
- Muon system (RPC)

Production near threshold and tag technique

- Dataset used in this talk:
 - $\begin{array}{lll} \bullet & 2.93 \text{ fb}^{\text{-1}} \ @ \mathsf{E}_{\mathsf{cm}} = 3.773 \text{ GeV} & e^+e^- \to \psi(3770) \to D\bar{D} \\ \bullet & 3.19 \text{ fb}^{\text{-1}} \ @ \mathsf{E}_{\mathsf{cm}} = 4.178 \text{ GeV} & e^+e^- \to D_{\underline{s}}^{\pm} D_s^{*\mp}, D_s^{*\mp} \to \pi^0/\gamma D_s^{\mp} \\ \bullet & 567 \text{ pb}^{\text{-1}} \ @ \mathsf{E}_{\mathsf{cm}} = 4.6 \text{GeV} & e^+e^- \to \Lambda_{\mathsf{c}}^+ \ \Lambda_{\mathsf{c}}^- \\ \end{array}$
- Two ways to study D_(s) decays:
 - Single Tag (ST): reonstruct only one of the D D(D_s⁺D_s⁻)
 - Double Tag (DT): reconstruct both of D $\overline{D}(D_s^+D_s^-)$

$D^+ \rightarrow \mu^+ \nu$ decay

$$\Gamma(D_{(oldsymbol{s})}^+ o \ell^+
u_\ell) = rac{G_F^2 f_{D_{(oldsymbol{s})}}^2}{8\pi} | oldsymbol{V_{cd(oldsymbol{s})}}|^2 m_\ell^2 m_{D_{(oldsymbol{s})}}^2 \left(1 - rac{m_\ell^2}{m_{D_{(oldsymbol{s})}}^2}
ight)^2$$

PRD89(2014)051104R

- Decay constant f_{D+} with input |V_{cd}|
- CKM matric element |V_{cd}| with input f^{LQCD}_{D+}

B[D+
$$\rightarrow \mu \nu$$
] =(3.71±0.19±0.06)×10⁻⁴

$$f_{D+} = (203.2 \pm 5.3 \pm 1.8) \text{ MeV}$$

$$|V_{cd}| = 0.2210 \pm 0.0058 \pm 0.0047$$

$D_s^+ \rightarrow \mu^+ \nu$

0.48fb⁻¹@4.01GeV

3.19fb⁻¹ @4.178GeV

$$B[D_s^+ \rightarrow \mu^+ \nu] = (0.528 \pm 0.015 \pm 0.014)\%$$

 $f_{Ds}|V_{cs}| = (242.5\pm3.5\pm3.7) \text{ MeV}$

$$R \equiv \frac{\Gamma(D_s^+ \to \tau^+ \nu)}{\Gamma(D_s^+ \to \mu^+ \nu)} = \frac{m_{\tau^+}^2 (1 - \frac{m_{\tau^+}^2}{M_{D_s^+}^2})^2}{m_{\mu^+}^2 (1 - \frac{m_{\tau^+}^2}{M_{D_s^+}^2})^2}$$

SM: $R = 9.74 \pm 0.01$

BESIII: $R = 10.2 \pm 0.5$

$D^+ \rightarrow \tau^+ \nu$ decay

 $\rm E_{EMC} \leq 300\,MeV$

$${
m E_{EMC}} > 300\,{
m MeV}$$

$$D^+ o au^+
u_ au$$

$$\begin{array}{c} D^+ \to \tau^+ \nu_{\tau} \\ D^+ \to \mu^+ \nu_{\mu} \\ D^+ \to \pi^+ \pi^0 \end{array}$$

$$D^+ \rightarrow \pi^+ \pi^0$$

$$D^+ o \pi^+ K_L^0$$

$$D^+ o \pi^+ \eta$$

$$D^+ o \pi^+ K_S^0$$

the rest

- $N_{sig} = 137 \pm 27$
- \bullet $\mathcal{B}_{D^+ \to \tau^+ \nu_{\tau}} =$ $(1.20\pm0.24_{stat.})\times10^{-3}$
- significance $>4\sigma$

Total ST: (234±2)×10⁴

DT: 47100±259

Improved analysis of D⁰→K⁻µ⁺v dynamics

$$\begin{split} \frac{d\Gamma}{dq^2} &= \frac{G_F^2 |V_{cs}|^2}{8\pi^3 m_D} |\vec{p}_K| |f_+^K(q^2)|^2 (\frac{W_0 - E_K}{F_0})^2 \\ &\times \left[\frac{1}{3} m_D |\vec{p}_K|^2 + \frac{m_\ell^2}{8m_D} (m_D^2 + m_K^2 + 2m_D E_K) \right. \\ &+ \frac{1}{3} m_\ell^2 \frac{|\vec{p}_K|^2}{F_0} + \frac{1}{4} m_\ell^2 \frac{m_D^2 - m_K^2}{m_D} \mathrm{Re}(\frac{f_-^K(q^2)}{f_+^K(q^2)}) \\ &+ \frac{1}{4} m_\ell^2 F_0 |\frac{f_-^K(q^2)}{f_+^K(q^2)}|^2] \end{split}$$

$$q = p_{\mu} + p_{\nu}$$
 $W_0 = (m_D^2 + m_K^2 - m_\ell^2)/2m_D$
 $F_0 = W_0 - E_K + m_\ell^2/2m_D$

Assumed to be independent of q² following FOCUS's treatment (PLB607(2005)233)

Comparison of f₊(0) and |V_{cs}|

Taking $|V_{cs}|_{[1]}$ as input

$$f_{+}^{K}(0)|V_{cs}| = 0.7148 \pm 0.0038_{\text{stat.}} \pm 0.0029_{\text{syst.}}$$

 $r_{1} = -1.94 \pm 0.21_{\text{stat.}} \pm 0.07_{\text{syst.}}$
 $f_{-}^{K}/f_{+}^{K} = -0.7 \pm 0.9_{\text{stat.}} \pm 0.1_{\text{syst.}}$

Taking $f_{+}^{K}(0)_{[2]}$ as input

[1] CKMFitter [2] PRD82(2010)114506

LFU test in $D^+ \rightarrow K^- \mu^+ \nu$ decay

$$R_{\mu/e} = \frac{\Gamma(D^+ \to K^- \mu^+ \nu_\mu)}{\Gamma(D^+ \to K^- e^+ \nu_e)[PRD92,072012(2015)]} = 0.978 \pm 0.007 \pm 0.012$$

No deviation larger than 2σ over the q² interval

Absolute Bf of $D_s \rightarrow \eta^{(')}e^+\nu$

Comparison of Bfs

Preliminary Result:

$$B[D_s^+ \rightarrow \eta e^+ v] = 2.31 \pm 0.06 \pm 0.06\%$$

 $B[D_s^+ \rightarrow \eta' e^+ v] = 0.82 \pm 0.07 \pm 0.03\%$

Comparisons of $f_+\eta^{(\prime)}(0)s$

Fit to partial decay rates

Comparisons of form factors

Case	Simple pole			Modified pole			Series 2 Par.		
	$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $			$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $			$f_{+}^{\eta^{(\prime)}}(0) V_{cs} $		χ^2/NDOF
$\eta e^{-} \nu_e$	0.450(5)(3)	3.77(8)(5)	12.2/14	0.445(5)(4)	0.30(4)(3)	11.4/14	0.446(5)(4)	-2.2(2)(1)	11.5/14
$\eta' e^+ \nu_e$	0.494(45)(10)	1.88(54)(5)	1.8/4	0.481(44)(10)	1.62(91)(11)	1.8/4	0.477(49)(11)	-13.1(76)(11)	1.9/4

[1] PRD 91 014503

[2] JHEP 1511 138

[3] PRD 88 034023

η-η' mixing angle

$$\frac{\Gamma(D_s^+ \to \eta' e^+ \nu) / \Gamma(D_s^+ \to \eta e^+ \nu)}{\Gamma(D^+ \to \eta' e^+ \nu) / \Gamma(D^+ \to \eta e^+ \nu)} \simeq \cot^4 \phi_P$$

Study of $D_s^+ \rightarrow K^{(*)0}e^+\nu_e$

Fit to partial decay rates in $D_s^+ \rightarrow K^0 e^+ v_e$:

data

Simple pole model Modified pole model Series two parameter

Model	Parameter	Value	$f_{+}(0)$
Simple pole	$f_{+}(0) V_{cd} $	$0.175 \pm 0.010 \pm 0.001$	$0.778 \pm 0.044 \pm 0.004$
Modified pole model	$f_{+}(0) V_{cd} $	$0.163 \pm 0.017 \pm 0.003$	$0.725 \pm 0.076 \pm 0.013$
	α	$0.45 \pm 0.44 \pm 0.02$	
Series two parameters	$f_{+}(0) V_{cd} $	$0.162 \pm 0.019 \pm 0.003$	$0.720 \pm 0.084 \pm 0.013$
	<i>r</i> ₁	$-2.94 \pm 2.32 \pm 0.14$	

Observation of $D_s^+ \rightarrow p \bar{n}$

- Only kinematic allowed baryonic decay of charmed meson, and help for understanding the dynamical enhancement of Wannihilation
 - Short-distance expected:Br~10⁻⁶ PLB663(2008)326
 - Long-distance enhance to: Br~10⁻³
- First evidence was observed by CLEO-c: $(1.30\pm0.36^{+0.12}_{-0.16})\times10^{-3}$

(PRL100, 181802(2008)).

preliminary result

$$\mathcal{B}_{D_s^+ \to p\bar{n}} = (1.22 \pm 0.10) \times 10^{-3}$$

- Confirm CLEO-c's measurement with greatly improved accuracy
- Consistent with the prediction of the enhanced BR due to long-distance effect via hadronic loop

Observation of $D_s^+ \rightarrow \omega \pi^+$ and ωK^+

- To understand the W-annihilation amplitude
- With and without the $\rho-\pi$ mixing the Bf of $D_s^+ \rightarrow \omega K^+$, will be quite different
 - B[D_s⁺ $\rightarrow \omega K$ ⁺] = 0.6×10⁻³(without ρ - ω mixing)
 - B[D_s⁺ $\rightarrow \omega K$ ⁺] = 0.07×10⁻³(with ρ - ω mixing)

 $D_s^+ \rightarrow \omega \pi^+$: Evidence by CLEO, BF = $(2.1\pm0.9\pm0.1)\times10^{-3}$ with a signal of 6.0 ± 2.4 events. $D_s^+ \rightarrow \omega K^+$: CLEO set an UL = 2.4×10^{-3} @90%C.L.

Fit to the invariant mass $M_{\pi+\pi-\pi0}$ to get the DT yield:

Preliminary results:

Consistent with CLEO's measurement, but more precise.

$$\mathcal{B}(D_s^+ \to \omega \pi^+) = (1.85 \pm 0.30_{stat.} \pm 0.19_{sys.}) \times 10^{-3}$$

$$\mathcal{B}(D_s^+ \to \omega K^+) = (1.13 \pm 0.24_{stat.} \pm 0.14_{sys.}) \times 10^{-3}$$
 First observation!

The measurement of $D_s^+ \rightarrow \omega K^+$ implies the $\rho-\omega$ mixing is negligible₁₈

Study of the inclusive decay $\Lambda_c^+ \rightarrow \Lambda X$

arXiv:1803.05706, accepted by PRL

- Mediated by c-s transition which help us understand dynamics of the lowest-lying charmed baryon [arXiv:1803.02267v3]
- Current PDG: B[$\Lambda_c^+ \rightarrow \Lambda + X = (35\pm11)\%$] with large uncertainty, and has not been updated since 1992.
- Search for the CPV by measuring the asymmetry

$$\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}$$

Extract yield from 2D distribution

$$N^{\text{sig}} = N^{\text{S}} - \frac{N^{\text{A}} + N^{\text{B}}}{2} - f \cdot (N^{\text{D}} - \frac{N^{\text{C}} + N^{\text{E}}}{2})$$

- $B[\Lambda_c^+ \rightarrow \Lambda X] = (38.2^{+2.8}_{-2.2} \pm 0.8)\%$
- All exclusive modes found in PDG is 24.5±2.1%.
 (~1/3 BFs are unknown)
- Acp = $(2.1^{+7.0}_{-6.6}\pm 1.4)\%$. (No CPV observed)

Study of the inclusive decay $\Lambda_c^+ \rightarrow e^+ X$

• Current PDG: BF($\Lambda_c^+ \rightarrow e + X$)=(4.5±1.7)%.

arXiv:1805.09060

- Large rate, but also with large uncertainty
- Tagged with $\Lambda_c^+ \rightarrow pK^-\pi^+$ and pK_s^0

$$\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = (3.95 \pm 0.34 \pm 0.09)\%$$

$$\xrightarrow{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)} = (91.9 \pm 12.5 \pm 5.4)\%$$

• The $\Lambda l^+ \nu_l$ dominate the $l^+ + X = > \mathcal{B} (pK l^+ \nu_l) \sim 10^{-3}$.

Result	$\Lambda_c^+ \to X e^+ \nu_e$	$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu_e)}{\bar{\Gamma}(D \to X e^+ \nu_e)}$
BESIII	3.95 ± 0.35	1.26 ± 0.12
MARK II	4.5 ± 1.7	1.44 ± 0.54
Effective-quark Method		1.67
Heavy-quark Expansion		1.2

Summary

- Using e⁺e⁻ collision data taken at 3.773, 4.178 GeV and 4.6 GeV with the BESIII detector, experimental studies of charm decays have been performed.
 - Measurements of decay constants $f_{D(s)+}$, form factors in semileptonic D decays $f_+^{K(p)}(0)$: improved calibrate LQCD/
 - Determinations of $|V_{cs(d)}|$: improved test on CKM matrix unitarity
 - $D_s^+ \to p$ n show an enhanced branching fraction due to long-distance effect. $D_s^+ \to \omega \pi^+$ and ωK^+ confirm CLEO's measurements with greatly improved precision.
 - Inclusive decays are studied in Λc^+ .

谢谢!!

• More result will be coming in the near future.