New Machine Learning Developments in ROOT/TMVA

S. Gleyzer, L. Moneta (CERN EP-SFT)
on behalf of the TMVA development team

XIIIth Quark Confinement and the Hadron Spectrum

31 July to 6 August 2018
Maynooth University (Ireland)
ROOT

- ROOT is a software toolkit which provides building blocks for:
 - Data processing
 - Data analysis
 - Data visualisation
 - Data storage

- ROOT is written mainly in C++ (C++11 standard)
- Bindings for Python are provided.

- Adopted in High Energy Physics and other sciences (but also industry)
- ~250 PetaBytes of data in ROOT format on the LHC Computing Grid
- Fits and parameters' estimations for discoveries (e.g. the Higgs)
- Thousands of ROOT plots in scientific publications

http://root.cern.ch
ROOT Machine Learning tools are provided in the package TMVA (Toolkit for MultiVariate Analysis)

Provides a set of algorithms for standard HEP usage

Used in LHC experiment production and in several analyses

Key features
- Facilitates HEP research, from detector to analysis
- Easy to use, good performance
- Long term support
- Several features added recently (e.g. deep learning)

Development done in collaboration with CERN experiments and HEP community
- see HSF community Machine Learning white paper
Outline

- Machine learning methods
 - Status of deep learning library
 - BDT parallelisation
- Workflow improvements
 - Cross validation
- A look into the future
Most Recent Features

- New features available in latest ROOT version 6.14:
 - Deep Learning Module with
 - Convolutional Layer
 - Recurrent Layer
 - improved Cross Validation
 - improved BDT performance using multi-thread parallelisation
- And also available since ROOT 6.12:
 - new interfaces to external tools (scikit-learn, Keras, R)
 - hyper-parameter optimization and variable importance
 - interactive training and visualisation for Jupyter notebooks
Deep Learning in TMVA

- Deep Learning library in ROOT/TMVA
- parallel evaluation on CPU
- implementation using OpenBlas and Intel TBB library
- GPU support using CUDA

- Excellent performance and high numerical throughput
- For more information see
Deep Learning Performance

DNN vs Standard ANN

- DNN: 5 hidden layers with 256 neurons
- SNN: 1 hidden layer

Using Higgs public dataset (from UCI) with 11M events

DNN vs BDT

Significant improvements compared to shallow networks and BDT
Training time — Dense networks
- Higgs UCI dataset with 11M Events
- TMVA vs. Keras/Tensorflow
- “Out-of-the-box” performance
 Excellent TMVA performance!
- How does it scale?

DNN Training Performance

![Graph showing DNN training performance with different configurations.](image)

- Larger = Better

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Number of Events Trained / second</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMVA CPU (S)</td>
<td>10^4</td>
</tr>
<tr>
<td>KERAS CPU (S)</td>
<td>10^5</td>
</tr>
<tr>
<td>TMVA CPU (P)</td>
<td>10^6</td>
</tr>
<tr>
<td>KERAS GPU</td>
<td>10^7</td>
</tr>
<tr>
<td>TMVA GPU (2)</td>
<td>10^8</td>
</tr>
<tr>
<td>KERAS GPU (2)</td>
<td>10^9</td>
</tr>
</tbody>
</table>

(S) — Single threaded
GPU — GTX1080Ti
(P) — Intel Xeon E5-2683 (28 core) GPU(2) — GTX980
DNN Training Performance

- Key difference is GPU utilisation
- Tensorflow optimised for large operations

Batch size 100

<table>
<thead>
<tr>
<th></th>
<th>TMVA CPU (P)</th>
<th>KERAS CPU (P)</th>
<th>TMVA GPU</th>
<th>KERAS GPU</th>
<th>TMVA GPU(2)</th>
<th>KERAS GPU(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Events Trained / second</td>
<td>10^4</td>
<td>10^5</td>
<td>10^5</td>
<td>10^5</td>
<td>10^5</td>
<td>10^5</td>
</tr>
</tbody>
</table>

Batch size 1000

<table>
<thead>
<tr>
<th></th>
<th>TMVA CPU (P)</th>
<th>KERAS CPU (P)</th>
<th>TMVA GPU</th>
<th>KERAS GPU</th>
<th>TMVA GPU(2)</th>
<th>KERAS GPU(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Events Trained / second</td>
<td>10^4</td>
<td>10^5</td>
<td>10^5</td>
<td>10^5</td>
<td>10^5</td>
<td>10^5</td>
</tr>
</tbody>
</table>

(S) — Single threaded
(P) — Intel Xeon E5-2683 (28 core) GPU — GTX1080Ti
GPU(2) — GTX980

Tensorflow optimised for large operations
New Deep Learning Developments

- Extended Deep Neural Network classes by adding:
 - Convolutional Neural Network
 - very powerful for image data sets
 - Recurrent Neural Network
 - useful for time-dependent data
 - Deep Auto Encoder
 - useful for dimensionality reduction (pre-processing tool)
 - can be used as unsupervised tool (e.g. for anomaly detection)
 - usable also for generating models, Variational Auto Encoder (VAE)
 - Generative Adversarial Network (GAN)
Convolutional Neural Network

- Available in latest ROOT release (6.14)
- Supporting CPU parallelization, GPU is available since few days in ROOT master
- parallelisation and code optimisation is essential

Convolutional + Pooling + Dense layers

Signal image

Background image

input 32x32 images

Background rejection versus Signal efficiency
CNN performance for TMVA CPU

- Simulated particle showers from electromagnetic calorimeter image dataset
- again excellent TMVA performance for typical HEP networks!
- TMVA GPU is becoming available. Code is in the process of being optimised
DL Evaluation Performance

- **Single event evaluation time** for 5 layer network
- For time critical applications — e.g. on-line reconstruction
- **Fast!** 1.5 times speedup over specialised libraries like LWTNN
- For batched evaluation, same story as training

![Prediction Time (5 Dense Layers - 200 units)](chart.png)
Deep learning library since 2016

- Recent additions
 - Convolutional and recurrent layers
 - Development ongoing!
 - LSTM (and also GRU) layers
 - GAN and VAE for generation
 - new optimisers complementing SGD
Boosted Decision Tree

- Boosting is serial → Can’t construct all trees in parallel
- Training time speed up ~1.6x with 4 threads approaching ~3x asymptotically
- To use, just add ROOT::EnableImplicitMT() to your code

Original slide by Andrew Carnes
Regression in TMVA

- **New Regression Features:**
 - Loss function
 - Huber (default)
 - Least Squares
 - Absolute Deviation
 - Custom Function

Important for regression performance
Cross Validation in TMVA

- TMVA supports k-fold cross-validation
- Integration with TMVA analysis tools (e.g. GUI)
- support for “CV in application”
- Hyper-parameter tuning
 - find optimised parameters (BDT-SVM)
- Parallel execution of folds in CV
 - using multi-processes execution in on a single node
 - foreseen to provide parallelisation in a cluster using Spark or MPI
Feature Importance

- Ranks the importance of features based on contribution to classifier performance
- A stochastic algorithm independent of classifier choice

\[FI(X_i) = \sum_{S \subseteq V : X_i \in S} F(S) \times W_{X_i}(S) \]

- Feature set \(\{V\} \)
- Feature subset \(\{S\} \)
- Classifier Performance \(F(S) \)

\[W_{X_i}(S) = 1 - \frac{F(S - \{X_i\})}{F(S)} \]
TMVA Jupyter Integration

New Python package for using TMVA in Jupyter notebook (*jsmva*)

- Improved Python API for TMVA functions
- Visualisation of BDT and DNN
- Enhanced output and plots (e.g. ROC plots)
- Improved interactivity (e.g. pause/resume/stop of training)
- see example in SWAN gallery
 https://swan.web.cern.ch/content/machine-learning
External tools are available as additional methods in TMVA and they can be trained and evaluated as any other internal ones.

- **RMVA**: Interface to Machine Learning methods in R
 - c50, xgboost, RSNNS, e1071

- **PYMVA**: Python Interface
 - scikit-learn
 - with RandomForest, Gradiend Tree Boost, Ada Boost
 - Keras (Theano + Tensorflow)
 - support model definition in Python and then training and evaluate in TMVA
 - input data are copied internally from input ROOT trees to Numpy arrays

The diagram shows a plot of **Background rejection versus Signal efficiency**. The MVA Methods include:

- DL: CPU
- PyKeras
- BDT
Future — Short term

- **Complete Deep learning library**
 - Conv layers on GPU
 - Add LSTM, GRU, GAN, VAE
 - And more!

- **Workflow improvements**
 - Modernised interfaces
 - Integration with ROOT RDataFrame for better input data handling
 - Optimize network evaluation
 - Inference of trained Tensorflow models using native TMVA
Future — Long term

- Lesson from the HSF Community white paper — Efficient physics workflows
- Provide tools for efficient
 - data loading (e.g. using new RDataFrame)
 - integration with external ML tools
 - deployment and inference of trained models
- TMVA efficiently connects input data to ML algorithms

HSF Community white paper — https://hepsoftwarefoundation.org/organization/cwp.html
Summary

Machine learning methods

- Dense, Convolutional and Recurrent networks in TMVA
- Excellent training + evaluation time performance
- Parallel boosted decision trees and improved trees for regression

Workflow

- Cross validation analysis + parallelisation

Future

- Efficient physics workflows
Conclusions

- Very active development happening in TMVA
 - several new features released recently and more expected for next release
 - thanks to many student contributions (e.g. from Google Summer of Code)
- Users contributions and feedback from users are essential
 - ROOT is an open source project
 - best way to contribute is with Pull Request in GitHub
 - https://github.com/root-project/root
- For user support we have the ROOT Forum :
 - with a category dedicated to TMVA
- For reporting ROOT bugs: https://sft.its.cern.ch/jira or just contact us directly
TMVA Contributors

- Lorenzo Moneta
- Sergei Gleyzer
- Omar Zapata Mesa
- Kim Albertsson
- Stefan Wunsch
- Peter Speckmeyer
- Simon Pfreundschuh (GSOC 2016)
- Vladimir Ilievski (GSOC 2017)
- Saurav Shekhar (GSOC 2017)
- Manos Stergiadis (GSOC 2018)
- Ravi Selvam (GSOC 2018)
- Adrian Bevan, Tom Stevenson
- Attila Bagoly (GSOC 2016)
- Paul Seyfert
- Andrew Carnes

Algorithm development, Integration and support
Analyzer Tools, Algorithm Development
PyMVA, RMVA, Modularity, Parallelization and Integration
Multi-class for BDT, cross validation/evaluation and support
Keras Interface, integration, improved data handling
Deep Learning CPU
Deep Learning CPU and GPU
New Deep Learning module, Convolutional layers
New Deep Learning module and Recurrent layers
GPU support for CNN
New optimisers for deep learning
SVMs, Cross-Validation, Hyperparameter Tuning
Jupyter Integration, Visualization, Output
Performance optimization
Regression, Loss Functions, BDT Parallelization

Continued invaluable contributions from Andreas Hoecker, Helge Voss, Eckhard v.Thorne, Jörg Stelzer, and key support from CERN EP-SFT group and other ROOT team members
Backup Slides
Deep Learning Performance

Network:
- 20 input nodes,
- 5 hidden layers with 256 nodes each,
- $tanh$ activation functions,
- squared error loss
- batch size = 1024
- Single precision

Training Data:
- Random data from a linear mapping $\mathbb{R}^n \rightarrow \mathbb{R}$

Excellent throughput compared to Theano on same GPU

2.7 * Theano
Cross Validation in Application

“CV in application”

- Workflow in HEP analysis
- Deterministic assignment of events to folds + save all trained models
- Performance estimation holds for collection of models

Used in e.g.

- Evidence for the $H \rightarrow b\bar{b}$ decay with the ATLAS detector (2017) — arxiv:1708.03299
- Search for the $b\bar{b}$ decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector (2015) — arxiv:1409.6212
Example PyMVA with Keras

Define model for Keras

```python
# Define model
model = Sequential()
model.add(Dense(32, init='glorot_normal', activation='relu',
                input_dim=numVariables))
model.add(Dropout(0.5))
model.add(Dense(32, init='glorot_normal', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, init='glorot_uniform', activation='softmax'))

# Set loss and optimizer
model.compile(loss='categorical_crossentropy', optimizer=Adam(),
              metrics=['categorical_accuracy'])

# Store model to file
model.save('model.h5')

# Print summary of model
model.summary()
```

Book the method as any others of TMVA

Just run the cells that contain the classifiers you want to try.

```python
# Keras interface with previously defined model
factory.BookMethod(dataloader, ROOT.TMVATypes.kPyKeras, 'PyKeras',
                   'HistoVarTransform=FilenameModel=model.h5;'+
                   'NumEpochs=10;BatchSize=32;'+
                   'TriesEarlyStopping=3')
```

Out[6]: `<ROOT.TMVAT::MethodPyKeras object ('PyKeras') at 0x77e48b0>`
PyMVA with Keras

Train, Test and Evaluate inside TMVA (using TMVA::Factory)

Run training, testing and evaluation

In [8]:

```python
factory.TrainAllMethods()
```

Factory : Train all methods

In [9]:

```python
factory.TestAllMethods()
```

Factory : Test all methods
Factory : Test method: PyKeras

In [10]:

```python
factory.EvaluateAllMethods()
```

Factory : Evaluate all methods
Factory : Evaluate classifier: PyKeras

Examine result with TMVA GUI

Background rejection versus Signal efficiency
Include in TMVA additional functionality for SVM: (work by T. Stevenson and A. Bevan)

New Kernel functions:

- Multi-Gaussian, Polynomial and support for product and sum of kernel functions

Implemented Parameter optimisation for kernel parameters and cost

Cost weighted to signal/background events