Multi-hadron observables from lattice QCD

Maxwell T. Hansen Confinement XIII
August 5th, 2018

Scattering and Spectroscopy

Experiments worldwide are exploring
the exotic resonance spectrum

Scattering and Spectroscopy

Experiments worldwide are exploring the exotic resonance spectrum
'exotic' = outside the quark model

hybrids

Understanding these requires the full machinery of... Quantum Chromodynamics (QCD)

Quarks and gluons (interactions constrained by symmetries)

Simple underlying structure leads to a rich variety of phenomena

Difficult to extract predictions from the underlying theory

Many resonances, many questions

PRL 91, 262001 (2003)

PRL95,142001 (2005)
see very nice talk from
Ryan Mitchell

Many resonances, many questions

PRL 91, 262001 (2003)

PRL95,142001 (2005)
see very nice talk from
Ryan Mitchell

- How does this rich structure emerge from such a simple underlying theory?
- How do resonances quantitatively modify scattering and production rates?
\square Why are some states well described by the quark model and others not?
\square How do resonance properties depend on QCD's fundamental parameters?

Definition of a resonance

\square Roughly speaking, a bump in $|\mathcal{M}(E)|^{2} \propto\left|e^{2 i \delta(E)}-1\right|^{2} \propto \sin ^{2} \delta(E)$
scattering rate unitarity relation

Definition of a resonance

\square Roughly speaking, a bump in $|\mathcal{M}(E)|^{2} \propto\left|e^{2 i \delta(E)}-1\right|^{2} \propto \sin ^{2} \delta(E)$
scattering rate
unitarity relation

Definition of a resonance

\square Roughly speaking, a bump in $|\mathcal{M}(E)|^{2} \propto\left|e^{2 i \delta(E)}-1\right|^{2} \propto \sin ^{2} \delta(E)$
scattering rate
unitarity relation
 the complex plane

Expand about some arbitrary point
$\operatorname{Im} E$

Definition of a resonance

\square Roughly speaking, a bump in $|\mathcal{M}(E)|^{2} \propto\left|e^{2 i \delta(E)}-1\right|^{2} \propto \sin ^{2} \delta(E)$
scattering rate
unitarity relation
 the complex plane

Expand about some arbitrary point
$\operatorname{Im} E$

Definition of a resonance

\square Roughly speaking, a bump in $|\mathcal{M}(E)|^{2} \propto\left|e^{2 i \delta(E)}-1\right|^{2} \propto \sin ^{2} \delta(E)$
scattering rate
 the complex plane

We see a feature that limits the convergence of the Taylor expansion
$\operatorname{Im} E$

Definition of a resonance

\square Roughly speaking, a bump in $|\mathcal{M}(E)|^{2} \propto\left|e^{2 i \delta(E)}-1\right|^{2} \propto \sin ^{2} \delta(E)$ unitarity relation
scattering rate

Multiple Riemann sheets

- It is more useful to analytically continue the scattering amplitude

$$
\mathcal{M}_{\ell}(s)=\frac{1}{\mathcal{K}_{\ell}(s)^{-1}+\rho(s)} \quad \rho(s) \propto i \sqrt{s-\left(2 M_{\pi}\right)^{2}}
$$

[Each two-particle channel generates a squre-root branchcut and doubles the number of Riemann sheets

Towards a detailed, first-principles understanding of resonances

Energies and decay channels
\square Locate complex poles in scattering amplitudes
The residues at the poles measure couplings to multi-particle decay products

Towards a detailed, first-principles understanding of resonances

Transition amplitudes

- Measure how photons and other currents mediate exotic resonance production

Energies and decay channels

- Locate complex poles in scattering amplitudes
\square The residues at the poles measure couplings to multi-particle decay products

Resonant form factors

- Predict how currents couple to the resonance

$|\operatorname{Res}\rangle=a|\lambda\rangle+b|\{\hat{Q}\rangle\rangle+c \mid$

Lattice QCD is a powerful tool for extracting QCD predictions

LQCD = evaluating a difficult integral numerically

$$
\text { observable }=\int \mathcal{D} \phi e^{i S}\left[\begin{array}{c}
\text { interpolator } \\
\text { for observable }
\end{array}\right]
$$

Lattice QCD is a powerful tool for extracting QCD predictions

LQCD = evaluating a difficult integral numerically
$\left(\begin{array}{c}\text { observable? } \\ \text { discretized, finite volume, } \\ \text { Euccidean, heavy pions }\end{array}\right)=\int \prod_{i}^{N} d \phi_{i} e^{-S}\left[\begin{array}{c}\text { interpolator } \\ \text { for observable }\end{array}\right]$
To do so we have to make three compromises

Also... Unphysical pion masses $M_{\pi, \text { lattice }}>M_{\pi, \text { our universe }}$
But calculations at the physical pion are becoming common

Difficulties for scattering

D The most important modification for scattering is the finite volume...

O Discretizes the spectrum
O Eliminates the branch cuts
O Removes the second Riemann sheet
O Hides the resonance poles

Difficulties for scattering

\square The most important modification for scattering is the finite volume...
O Discretizes the spectrum
O Eliminates the branch cuts
O Removes the second Riemann sheet
O Hides the resonance poles

Finite-volume analytic structure

Infinite-volume analytic structure

Observables available in LQCD

'On the lattice' one can calculate finitevolume energies and matrix elements

$$
\left\langle\mathcal{O}_{j}(\tau) \mathcal{O}_{i}^{\dagger}(0)\right\rangle=\sum_{n}\langle 0| \mathcal{O}_{j}(\tau)\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}_{i}^{\dagger}(0)|0\rangle=\sum_{n} e^{-E_{n}(L) \tau} Z_{n, j} Z_{n, i}^{*}
$$

Observables available in LQCD

'On the lattice' one can calculate finitevolume energies and matrix elements

$$
\left\langle\mathcal{O}_{j}(\tau) \mathcal{O}_{i}^{\dagger}(0)\right\rangle=\sum_{n}\langle 0| \mathcal{O}_{j}(\tau)\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}_{i}^{\dagger}(0)|0\rangle=\sum_{n} e^{-E_{n}(L) \tau} Z_{n, j} Z_{n, i}^{*}
$$

A key technical breakthrough: Distillation M. Peardon et al. 2009
the extraction of the essential meaning or most important aspects of something
Construct smeared quark propagators via Laplacian eigenvectors

Observables available in LQCD

'On the lattice' one can calculate finitevolume energies and matrix elements

$$
\left\langle\mathcal{O}_{j}(\tau) \mathcal{O}_{i}^{\dagger}(0)\right\rangle=\sum_{n}\langle 0| \mathcal{O}_{j}(\tau)\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{O}_{i}^{\dagger}(0)|0\rangle=\sum_{n} e^{-E_{n}(L) \tau} Z_{n, j} Z_{n, i}^{*}
$$

A key technical breakthrough: Distillation M. Peardon et al. 2009 the extraction of the essential meaning or most important aspects of something

Construct smeared quark propagators via Laplacian eigenvectors
Can determine optimized operators by ‘diagonalizing’ the correlator matrix (GEVP)

This gives a method to determine energies and matrix elements

$$
\left\langle\Omega_{m}(\tau) \Omega_{m}^{\dagger}(0)\right\rangle \sim e^{-E_{m}(L) \tau}+\cdots
$$

$$
\left\langle\Omega_{m^{\prime}}(\tau) \mathcal{J}(0) \Omega_{m}^{\dagger}(-\tau)\right\rangle \sim e^{-E_{m^{\prime}} \tau} e^{-E_{m} \tau}\left\langle E_{m^{\prime}}\right| \mathcal{J}(0)\left|E_{m}\right\rangle+\cdots
$$

Scattering in LQCD relies on relations between finite- and infinite-volume quantities

Energies and decay channels

Finite-volume energies related to scattering

Scattering in LQCD relies on relations between finite- and infinite-volume quantities

Energies and decay channels

Finite-volume energies related to scattering
Resonant form factors

See talk by Raúl Briceño

Scattering in LQCD relies on relations between finite- and infinite-volume quantities

Energies and decay channels

Finite-volume energies related to scattering
Transition amplitudes
Energies and finite-volume matrix elements are related to transitions

Resonant form factors

See talk by Raúl Briceño

Basic idea

\square Finite-volume set-up

- cubic, spatial volume (extent L)
- periodic boundary conditions

$$
\vec{p}=\frac{2 \pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}
$$

$\square L$ is large enough to neglect $e^{-M_{\pi} L}$

Basic idea

\square Finite-volume set-up

- cubic, spatial volume (extent L)
- periodic boundary conditions

$$
\vec{p}=\frac{2 \pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}
$$

$\square L$ is large enough to neglect $e^{-M_{\pi} L}$

- Scattering observables leave an imprint on finite-volume quantities

Basic idea

\square Finite-volume set-up

- cubic, spatial volume (extent L)
- periodic boundary conditions

$$
\vec{p}=\frac{2 \pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}
$$

$\square \mathrm{L}$ is large enough to neglect $e^{-M_{\pi} L}$
\square Scattering observables leave an imprint on finite-volume quantities Consider a weakly-interacting, two-body system with no bound states

Infinite-volume ground state
$\mathcal{M}_{\ell=0}\left(2 M_{\pi}\right)=-32 \pi M_{\pi} a$

Basic idea

\square Finite-volume set-up

- cubic, spatial volume (extent L)
- periodic boundary conditions

$$
\vec{p}=\frac{2 \pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}
$$

$\square L$ is large enough to neglect $e^{-M_{\pi} L}$

- Scattering observables leave an imprint on finite-volume quantities Consider a weakly-interacting, two-body system with no bound states

Infinite-volume ground state

Finite-volume ground state

$$
E_{0}(L)=2 M_{\pi}+\frac{4 \pi a}{M_{\pi} L^{3}}+\mathcal{O}\left(1 / L^{4}\right)
$$

Huang, Yang (1958)

Basic idea

\square Finite-volume set-up

- cubic, spatial volume (extent L)
- periodic boundary conditions

$$
\vec{p}=\frac{2 \pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}
$$

$\square L$ is large enough to neglect $e^{-M_{\pi} L}$

- Scattering observables leave an imprint on finite-volume quantities Consider a weakly-interacting, two-body system with no bound states

scattering length \downarrow Finite-volume ground state

$$
E_{0}(L)=2 M_{\pi}+\frac{1 \pi a)}{M_{\pi} L^{3}}+\mathcal{O}\left(1 / L^{4}\right)
$$

Huang, Yang (1958)

Hint of the derivation

- In the infinite-volume world...

$$
\mathcal{M}_{\ell=0}\left(E_{\mathrm{cm}}\right)=\varnothing+\cdots=-\lambda+\mathcal{O}\left(\lambda^{2}\right) \longleftarrow
$$

Lines represent low-energy degrees of freedom (e.g. pions in QCD)

Hint of the derivation

- In the infinite-volume world...

$$
\mathcal{M}_{\ell=0}\left(E_{\mathrm{cm}}\right)=\zeta_{0}+\cdots=-\lambda+\mathcal{O}\left(\lambda^{2}\right) \longrightarrow a=\frac{\lambda}{32 \pi M_{\pi}}+\mathcal{O}\left(\lambda^{2}\right)
$$

Hint of the derivation

I In the infinite-volume world...
scattering length

$$
\mathcal{M}_{\ell=0}\left(E_{\mathrm{cm}}\right)=\curlywedge+\cdots=-\lambda+\mathcal{O}\left(\lambda^{2}\right) \longrightarrow a=\frac{\lambda}{32 \pi M_{\pi}}+\mathcal{O}\left(\lambda^{2}\right)
$$

- In the finite-volume world...

$$
\begin{aligned}
\mathcal{M}_{L}\left(E_{\mathrm{cm}}\right) & =\underbrace{}_{\text {At leading order, the finite-volume }} \quad \text { amplitude has no poles } \\
& =-\lambda+\cdots \quad \leftarrow
\end{aligned}
$$

Hint of the derivation

- In the infinite-volume world...

$$
\begin{array}{lc}
\text { n the infinite-volume world... } & \begin{array}{c}
\text { scattering length } \\
\mathcal{M}_{\ell=0}\left(E_{\mathrm{cm}}\right)= \\
+\cdots=-\lambda+\mathcal{O}\left(\lambda^{2}\right)
\end{array} a=\frac{\lambda}{32 \pi M_{\pi}}+\mathcal{O}\left(\lambda^{2}\right)
\end{array}
$$

\square In the finite-volume world...

$$
\begin{aligned}
& \mathcal{M}_{L}\left(E_{\mathrm{cm}}\right)=\mathrm{O}+\mathrm{O}+\cdots \\
& =-\lambda-\lambda \frac{1}{2} \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{1}{\left(2 \omega_{\mathbf{k}}\right)^{2}\left(E_{\mathrm{cm}}-2 \omega_{\mathbf{k}}\right)} \lambda+\cdots
\end{aligned}
$$

At next-to-leading order, we see poles of two non-interacting particles

$$
\omega_{\mathbf{k}}=\sqrt{\mathbf{k}^{2}+M_{\pi}^{2}} \quad \text { where } \mathbf{k}=\frac{2 \pi}{L} \mathbf{n}, \quad \mathbf{n} \in \mathbb{Z}^{3}
$$

Hint of the derivation

I In the infinite-volume world...
scattering length

$$
\mathcal{M}_{\ell=0}\left(E_{\mathrm{cm}}\right)=\boldsymbol{\sigma}^{2}+\cdots=-\lambda+\mathcal{O}\left(\lambda^{2}\right) \longrightarrow a=\frac{\lambda}{32 \pi M_{\pi}}+\mathcal{O}\left(\lambda^{2}\right)
$$

- In the finite-volume world...

$$
\begin{aligned}
& \mathcal{M}_{L}\left(E_{\mathrm{cm}}\right)= \\
&=-\lambda-\lambda \frac{1}{2} \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{1}{\left(2 \omega_{\mathbf{k}}\right)^{2}\left(E_{\mathrm{cm}}-2 \omega_{\mathbf{k}}\right)} \lambda+\cdots \\
&=-\lambda-\lambda \frac{1}{2} \frac{1}{L^{3}} \frac{1}{\left(2 M_{\pi}\right)^{2}\left(E_{\mathrm{cm}}-2 M_{\pi}\right)} \lambda+\cdots \\
& \begin{array}{l}
\text { pole from two zero- } \\
\text { momentum pions }
\end{array} \\
& \text { lowest-in on the }
\end{aligned}
$$

The truncated series is failing because we are interested in $E_{\mathrm{cm}}-2 M_{\pi}=\mathcal{O}(\lambda)$

Hint of the derivation

- In the infinite-volume world...
scattering length

$$
\mathcal{M}_{\ell=0}\left(E_{\mathrm{cm}}\right)=\curlywedge+\cdots=-\lambda+\mathcal{O}\left(\lambda^{2}\right) \longrightarrow a=\frac{\lambda}{32 \pi M_{\pi}}+\mathcal{O}\left(\lambda^{2}\right)
$$

\square In the finite-volume world...

$$
\begin{aligned}
\mathcal{M}_{L}\left(E_{\mathrm{cm}}\right) & =2 \\
& =-\lambda-\lambda \frac{1}{2} \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{1}{\left(2 \omega_{\mathbf{k}}\right)^{2}\left(E_{\mathrm{cm}}-2 \omega_{\mathbf{k}}\right)} \lambda+\cdots \\
& =-\lambda-\lambda \frac{1}{2} \frac{1}{L^{3}} \frac{1}{\left(2 M_{\pi}\right)^{2}\left(E_{\mathrm{cm}}-2 M_{\pi}\right)} \lambda+\cdots \\
& =-\lambda \sum_{n=0}^{\infty}\left[f\left(E_{\mathrm{cm}}, L\right) \lambda\right]^{n}=\frac{1}{-1 / \lambda+f\left(E_{\mathrm{cm}}, L\right)}
\end{aligned}
$$

Hint of the derivation

- In the infinite-volume world...
scattering length

$$
\mathcal{M}_{\ell=0}\left(E_{\mathrm{cm}}\right)=\curlywedge+\cdots=-\lambda+\mathcal{O}\left(\lambda^{2}\right) \longrightarrow a=\frac{\lambda}{32 \pi M_{\pi}}+\mathcal{O}\left(\lambda^{2}\right)
$$

\square In the finite-volume world...

$$
\begin{aligned}
\mathcal{M}_{L}\left(E_{\mathrm{cm}}\right) & =\text { ? } \\
& =-\lambda-\lambda \frac{1}{2} \frac{1}{L^{3}} \sum_{\mathbf{k}} \frac{1}{\left(2 \omega_{\mathbf{k}}\right)^{2}\left(E_{\mathrm{cm}}-2 \omega_{\mathbf{k}}\right)} \lambda+\cdots \\
& =-\lambda-\lambda \frac{1}{2} \frac{1}{L^{3}} \frac{1}{\left(2 M_{\pi}\right)^{2}\left(E_{\mathrm{cm}}-2 M_{\pi}\right)} \lambda+\cdots \\
& =-\lambda \sum_{n=0}^{\infty}\left[f\left(E_{\mathrm{cm}}, L\right) \lambda\right]^{n}=\frac{1}{-1 / \lambda+f\left(E_{\mathrm{cm}}, L\right)}
\end{aligned}
$$

Summing this singular contribution to all orders gives the final expression...

$$
-1 / \lambda+f\left(E_{\mathrm{cm}}, L\right)=0 \quad \Longrightarrow \quad E_{\mathrm{cm}}=2 M_{\pi}+\frac{4 \pi a}{M_{\pi} L^{3}}+\mathcal{O}\left(1 / L^{4}\right)
$$

- This result can be generalized dramatically...

Two-to-two scattering

\square Lüscher's formalism + extensions give a general mapping

\square All results are contained in a generalized quantization condition

$$
\operatorname{det}\left[\mathcal{M}_{2}^{-1}\left(E_{n}^{*}\right)+F\left(E_{n}, \vec{P}, L\right)\right]=0
$$

scattering amplitude known geometric function

Two-to-two scattering

\square Lüscher's formalism + extensions give a general mapping

- All results are contained in a generalized quantization condition

$$
\begin{aligned}
& \quad \operatorname{det}\left[\mathcal{M}_{2}^{-1}\left(E_{n}^{*}\right)+\underset{\text { scattering amplitude }}{\left.F\left(E_{n}, \vec{P}, L\right)\right]}=0\right. \\
& \text { Matrices in angular momentum, spin and channel space }
\end{aligned}
$$

V Varying E, \vec{P} gives more constraints on functions of $E^{* 2}=E^{2}-\vec{P}^{2}$
\square Derivation ignores (drops) suppressed volume effects ($e^{-M_{\pi} L}$)

Huang, Yang (1958) ○ Lüscher (1986, 1991) ○ Rummukainen, Gottlieb (1995)
Kim, Sachrajda, Sharpe (2005) ○ Christ, Kim, Yamazaki (2005) ○ He, Feng, Liu (2005)
Beane, Detmold, Savage (2007) ○ Tan (2008) ○ Leskovec, Prelovsek (2012) ○ Bernard et. al. (2012) MTH, Sharpe (2012) ○ Briceño, Davoudi (2012) ○ Li, Liu (2013) ○ Briceño (2014)

Using the result

\square Simplest case is a single channel
(e.g. for pions in a p-wave the relation reduces to)

Using the result

\square Simplest case is a single channel
(e.g. for pions in a p-wave the relation reduces to)

$$
\mathcal{M}_{2}\left(E_{n}^{*}\right)=-1 / F\left(E_{n}, \vec{P}, L\right)
$$

 from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result

\square Simplest case is a single channel
(e.g. for pions in a p-wave the relation reduces to)

$$
\mathcal{M}_{2}\left(E_{n}^{*}\right)=-1 / F\left(E_{n}, \vec{P}, L\right)
$$

 from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result

\square Simplest case is a single channel
(e.g. for pions in a p-wave the relation reduces to)

$$
\mathcal{M}_{2}\left(E_{n}^{*}\right)=-1 / F\left(E_{n}, \vec{P}, L\right)
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result

\square Simplest case is a single channel
(e.g. for pions in a p-wave the relation reduces to)

$$
\mathcal{M}_{2}\left(E_{n}^{*}\right)=-1 / F\left(E_{n}, \vec{P}, L\right)
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result

\square Simplest case is a single channel
(e.g. for pions in a p-wave the relation reduces to)

$$
\mathcal{M}_{2}\left(E_{n}^{*}\right)=-1 / F\left(E_{n}, \vec{P}, L\right)
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Coupled channels

- The cubic volume mixes different partial waves...

$$
\begin{array}{cc}
\text { e.g. } K \pi & \rightarrow K \pi \\
\vec{P} \neq 0
\end{array} \longrightarrow \operatorname{det}\left[\left(\begin{array}{cc}
\mathcal{M}_{s}^{-1} & 0 \\
0 & \mathcal{M}_{p}^{-1}
\end{array}\right)+\left(\begin{array}{ll}
F_{s s} & F_{s p} \\
F_{p s} & F_{p p}
\end{array}\right)\right]=0
$$

Coupled channels

\square The cubic volume mixes different partial waves...

$$
\begin{array}{cc}
\text { e.g. } \begin{aligned}
& K \pi \rightarrow K \pi \\
& \vec{P} \neq 0
\end{aligned} \longrightarrow \operatorname{det}\left[\left(\begin{array}{cc}
\mathcal{M}_{s}^{-1} & 0 \\
0 & \mathcal{M}_{p}^{-1}
\end{array}\right)+\left(\begin{array}{ll}
F_{s s} & F_{s p} \\
F_{p s} & F_{p p}
\end{array}\right)\right]=0
\end{array}
$$

...as well as different flavor channels...
e.g. $\begin{array}{ll}a=\pi \pi \\ & b=K \bar{K}\end{array} \longrightarrow \operatorname{det}\left[\left(\begin{array}{cc}\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\ \mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}\end{array}\right)^{-1}+\left(\begin{array}{cc}F_{a} & 0 \\ 0 & F_{b}\end{array}\right)\right]=0$

Coupled channels

- The cubic volume mixes different partial waves...

$$
\text { e.g. } \begin{aligned}
& K \pi \rightarrow K \pi \\
& \vec{P} \neq 0
\end{aligned} \longrightarrow \operatorname{det}\left[\left(\begin{array}{cc}
\mathcal{M}_{s}^{-1} & 0 \\
0 & \mathcal{M}_{p}^{-1}
\end{array}\right)+\left(\begin{array}{ll}
F_{s s} & F_{s p} \\
F_{p s} & F_{p p}
\end{array}\right)\right]=0
$$

...as well as different flavor channels...
e.g. $\begin{array}{ll}a=\pi \pi \\ & b=K \bar{K}\end{array} \longrightarrow \operatorname{det}\left[\left(\begin{array}{cc}\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\ \mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}\end{array}\right)^{-1}+\left(\begin{array}{cc}F_{a} & 0 \\ 0 & F_{b}\end{array}\right)\right]=0$

- The road to physics...

Calculate a matrix of correlators with a large \& varied operator basis $\left\langle\mathcal{O}_{a}(\tau) \mathcal{O}_{b}^{\dagger}(0)\right\rangle$

Diagonalize (GEVP) to reliably extract finite-volume energies

$$
\left\langle\Omega_{m}(\tau) \Omega_{m}^{\dagger}(0)\right\rangle \sim e^{-E_{m}(L) \tau}
$$

Vary L and P to recover a dense set of energies

Coupled channels

- The cubic volume mixes different partial waves...

$$
\begin{array}{cc}
\text { e.g. } K \pi \rightarrow K \pi \\
\vec{P} \neq 0
\end{array} \longrightarrow \operatorname{det}\left[\left(\begin{array}{cc}
\mathcal{M}_{s}^{-1} & 0 \\
0 & \mathcal{M}_{p}^{-1}
\end{array}\right)+\left(\begin{array}{ll}
F_{s s} & F_{s p} \\
F_{p s} & F_{p p}
\end{array}\right)\right]=0
$$

...as well as different flavor channels...
$\left.\begin{array}{ll}\text { e.g. } & a=\pi \pi \\ & b=K \bar{K}\end{array} \operatorname{det}\left[\begin{array}{ll}\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\ \mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}\end{array}\right)^{-1}+\left(\begin{array}{cc}F_{a} & 0 \\ 0 & F_{b}\end{array}\right)\right]=0$

- The road to physics...

Calculate a matrix of correlators with a large \& varied operator basis $\left\langle\mathcal{O}_{a}(\tau) \mathcal{O}_{b}^{\dagger}(0)\right\rangle$

Diagonalize (GEVP) to reliably extract finite-volume energies

$$
\left\langle\Omega_{m}(\tau) \Omega_{m}^{\dagger}(0)\right\rangle \sim e^{-E_{m}(L) \tau}
$$

Identify a broad list of K-matrix parametrizations

polynomials

 and poles
Coupled channels

- The cubic volume mixes different partial waves...

$$
\begin{array}{cc}
\text { e.g. } K \pi & \rightarrow K \pi \\
\vec{P} \neq 0
\end{array} \longrightarrow \operatorname{det}\left[\left(\begin{array}{cc}
\mathcal{M}_{s}^{-1} & 0 \\
0 & \mathcal{M}_{p}^{-1}
\end{array}\right)+\left(\begin{array}{ll}
F_{s s} & F_{s p} \\
F_{p s} & F_{p p}
\end{array}\right)\right]=0
$$

...as well as different flavor channels...
$\left.\begin{array}{ll}\text { e.g. } & a=\pi \pi \\ & b=K \bar{K}\end{array} \operatorname{det}\left[\begin{array}{ll}\mathcal{M}_{a \rightarrow a} & \mathcal{M}_{a \rightarrow b} \\ \mathcal{M}_{b \rightarrow a} & \mathcal{M}_{b \rightarrow b}\end{array}\right)^{-1}+\left(\begin{array}{cc}F_{a} & 0 \\ 0 & F_{b}\end{array}\right)\right]=0$

- The road to physics...

Calculate a matrix of correlators with a large \& varied operator basis $\left\langle\mathcal{O}_{a}(\tau) \mathcal{O}_{b}^{\dagger}(0)\right\rangle$

Diagonalize (GEVP) to reliably extract finite-volume energies

$$
\left\langle\Omega_{m}(\tau) \Omega_{m}^{\dagger}(0)\right\rangle \sim e^{-E_{m}(L) \tau}
$$

Identify a broad list of K-matrix parametrizations polynomials and poles
dispersion theory based

Vary L and P to recover a dense set of energies

$\left[\begin{array}{llll}{[000], \mathbb{A}_{1}} \\ {[001], \mathbb{A}_{1}}\end{array}\right.$	\circ	\circ	\circ	\circ	\circ
$[011], \mathbb{A}_{1}$					
	\circ	\circ	\circ	\circ	\circ
		\circ	\circ	\circ	
				$E_{n}(L)$	

Perform global fits to the finite-volume spectrum

Lots of activity!

$\rho \rightarrow \pi \pi$

$$
\kappa \rightarrow K \pi
$$

- CP-PACS/PACS-CS 2007, 201I
$K^{*} \rightarrow K \pi$
- ETMC 2010
- Lang et al. 2011
- HadSpec 2012, 2016
- Pellisier 2012
- RQCD 2015
- Guo et al. 2016
- Fu et al. 2016
- Bulava et al. 2016
\square Alexandrou et al. 2017

\square Lang et al. 2012
- Prelovsek et al. 2013
- Wilson et al. 2015
- RQCD 2015
- Brett et al. 2018

$$
\sigma \rightarrow \pi \pi
$$

- Prelovsek et al. 2010
- Fu 2013
- Wakayama 2015
- Howarth and Giedt 2017
- Briceño et al. 2017

$$
a_{0}(980) \rightarrow \pi \eta, K \bar{K}
$$

$$
\text { D Dudek et al. } 2016
$$

$\rho \rightarrow \pi \pi$

$$
I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)
$$

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

Coupled-channel scattering!

Briceño, Dudek, Edwards \& Wilson (2017)

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

Coupled-channel scattering!

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{++}\right)
$$

Coupled-channel scattering!

There's so much more!...

\square Much more activity in the light-quark sector
\square e.g. first complete determination of the scalar and tensor nonets

had $\sqrt{\text { spec }}$

$\pi т, K K, \eta \eta:$
$K \pi, K \eta$: Briceño, Dudek, Edwards - arXiv (2017)
Dudek, Edwards, Thomas, Wilson - PRL (2015) Wilson, Dudek, Edwards, Thomas - PRD (2015) Dudek, Edwards, Wilson - PRD (2016)
\square recent result for K^{*} (892) from Brett et al. 2018

There's so much more!...

\square Scattering calculations are also being performed in the charm sector!
\square e.g. $I=0, D K \rightarrow D K$ scattering examining the $D_{s 0}^{*}(2317)$

- Lang et al. (2014)
- Bali et al. (2017)
\square e.g. $I=1 / 2, D \pi, D \eta, D_{s} \bar{K}$ scattering examining the $D_{0}^{*}(2400)$
- Moir, Peardon, Ryan, Thomas \& Wilson (2016)

There's so much more!...

\square Scattering calculations are also being performed in the charm sector!
\square e.g. $I=0, D K \rightarrow D K$ scattering examining the $D_{s 0}^{*}(2317)$
\square Lang et al. (2014) Bali et al. (2017)
\square e.g. $I=1 / 2, D \pi, D \eta, D_{s} \bar{K}$ scattering examining the $D_{0}^{*}(2400)$
D Moir, Peardon, Ryan, Thomas \& Wilson (2016)

\square Also significant progress in nucleon-meson and nucleon-nucleon scattering
Talks at this workshop from...
Evan Berkowitz, Raúl Briceño, Will Detmold, Jozef Dudek, Ciaran Hughes, Nilmani Mathur, Daniel Mohler, Amy Nicholson, Phiala Shanahan, Christopher Thomas

Scattering in LQCD relies on relations between finite- and infinite-volume quantities

Energies and decay channels

Finite-volume energies related to scattering
Transition amplitudes
Energies and finite-volume matrix elements are related to transitions

Resonant form factors

The aim is to derive a formalism for studying relativistic two- and three-particle systems from lattice QCD

The aim is to derive a formalism for studying relativistic two- and three-particle systems from lattice QCD

Potential applications...

- Studying three-particle resonances

$$
\begin{aligned}
\omega(782), & a_{1}(1420) & \rightarrow \pi \pi \pi & \eta(1405)
\end{aligned} \rightarrow a_{0}(980) \pi
$$

- Calculating weak decays, form factors and transitions

$$
K \rightarrow \pi \pi \pi \quad \quad N \gamma^{*} \rightarrow N \pi \pi
$$

First consider identical scalar particles with a Z_{2} symmetry

First consider identical scalar particles with a Z_{2} symmetry

The three-to-three scattering amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv$
fully connected correlator with six external legs amputated and projected on shell

First consider identical scalar particles with a Z_{2} symmetry

The three-to-three scattering amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv$
fully connected correlator with
six external legs amputated and projected on shell

First consider identical scalar particles with a Z_{2} symmetry

The three-to-three scattering amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv$
fully connected correlator with
six external legs amputated and projected on shell

Certain external momenta
put this on-shell!

The three-to-three scattering amplitude has more degrees of freedom

First consider identical scalar particles with a Z_{2} symmetry

The three-to-three scattering amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv$
fully connected correlator with six external legs amputated and projected on shell

Certain external momenta
put this on-shell!

The three-to-three scattering amplitude has more degrees of freedom

12 momentum components

- IO Poincaré generators

2 degrees of freedom

First consider identical scalar particles with a Z_{2} symmetry

The three-to-three scattering amplitude has kinematic singularities
$i \mathcal{M}_{3 \rightarrow 3} \equiv$ fully connected correlator with six external legs amputated and projected on shell

Certain external momenta
put this on-shell!

The three-to-three scattering amplitude has more degrees of freedom

12 momentum components

- IO Poincaré generators

2 degrees of freedom

18 momentum components

- 10 Poincaré generators

8 degrees of freedom

Skeleton expansion

$+\cdots$

Kernel definitions:
$\bigcirc \equiv x+x+\cdots+\cdots$
$\because \equiv x+\rightarrow+\cdots$

- All lines represent pions
\square Boxes represent sums over finitevolume momenta

Current status:

Complete (model- \& EFT-independent relation) between finite-volume energies and two-and-three particle scattering for identical scalars

MTH, Sharpe (2014-2016) o Briceño, MTH, Sharpe (2017) see also Hammer, Pang, Rusetsky (2017) o Döring, Mai (2017)

$\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}(E)=0$ solutions

Straightforward to vary a and to study large volumes

Towards three-particle resonance extraction

\square Need to understand the finite-volume signature

$$
a=-10 \quad \mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}}(E)=-\frac{c \times 10^{3}}{E^{2}-M_{R}^{2}}
$$

Further investigation is needed to see if this gives a physical resonance description

Scattering in LQCD relies on relations between finite- and infinite-volume quantities

Energies and decay channels

Finite-volume energies related to scattering
Resonant form factors

See talk by Raúl Briceño

Scattering in LQCD relies on relations between finite- and infinite-volume quantities

Energies and decay channels

Finite-volume energies related to scattering
\square Using the finite-volume as a tool has proven to be a powerful approach

- The two-particle sector is increasingly under control
(Many coupled channel scattering calculations already available)
- Stay tuned for three-particle scattering observables from LQCD

