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UF Keywords
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» Machine Learning
 Data Analysis
o Statistics
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UF Statistics

IIIIIIIIII

21 presentations
» ~1/2 related to machine learning

08/02/18 Sergei Gleyzer QCHS 2018 3



UF Presentation Topics ©

IIIIIIIIIIII

» Machine Learning

— Software and Tools, Deep Learning
Applications and Interpretation, Metrics,
Gaussian Processes, Simulation, PDFs

o Statistics and Data Analysis

—Bayesian Methods, Unfolding, Confidence
Intervals, Coverage, Morphing, Managing
Systematics, Anomaly Detection

08/02/18 Sergei Gleyzer QCHS 2018 4



A Few Open Problems

* Hereis an incomplete list of open issues in the
application of statistical tools to HEP analysis

— Discovery levels: can we go Bayesian?

— Optimization: everybody claims they did it. But what about
systematic uncertainties?

— DNNs: brute force or feature engineering?

— Unsupervised learning and model-independent searches:
can we ever safely get there?

— Unfolding in multi-D: should we bother? T. Dorigo



IIIIIIIIII

Deep Learning
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The Bayesian Interpretation

Every standard machine learning method, even one as cryptic as
AdaBoost, can be cast as an optimization problem whose goal is to
minimize the average

N
RF) = 2 3 LUy, F(x,0)) + C(6)

of a suitablefloss function L(y, f) subject to some constraint C(6)

The key point to note is that this sum approximates the functional
RIA) = [ | [ ety 1.0 b0 o

EfG(f) dx, H. Prosper

where p(y, x) is the probability density of the targets y and features x.

08/02/18

Harrison B. Prosper (FSU) Bayesian Interpretation of DNN August 1, 2018 10 / 25



UF  Loss Functions

UNIVERSITY of

FLORIDA

New Regression Features:
Loss function
o Huber (default)
» Least Squares
o Absolute Deviation

o Custom Function

08/02/18
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INFERENCE-MOTIVATED LOSS FUNCTION

A(—=InL) surface

If we expand the negative log-likelihood 1.6 6
around  minimum  (e.g.  Asimov : J
n; = ay - 5 + ap - b;), due to Cramér-Rao 4 | °
bound: $1.2] 4
covariance > H™1(—In L) ~§ 1.0 5
which can be computed via autodiff. Can 208 B
use as loss function directly the variance 2 el :
bound on the parameters of interest / L1
0.4 g
loss =~ Var(u) (expected)

196 198 200 202 2.04
nuisance parameter (bkg mean)

08/02/18 P. de Castro .
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Systematic Uncertainties
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Sources of uncertainties CINFR

« Systematic uncertainties may affect the rate (i.e.: cross section)
or shape (i.e.: distribution) of a process or both
— Luminosity
— Pile up modeling in simulation
— Jet Energy Scale
— b-tagging efficiency, mis-id, flavor dependence
— Mu, e selection, reconstruction and trigger efficiencies
— Thenry modeling:

Individual cross section predictions

Shape and normalization due to renorm./factor. Scales
PDF models

Parton shower modeling

Generator choice

— Monte Carlo simulation
Limited sample size

X Quark Confinemeant and the Hadron Spactrum Luca Lista 1 0



pulls

Results of fit (2) <R

Constraint of systematic uncertainties

= bkg-only fit —e— sgn+bkg fit

I]Itillll||||

III|III[I

2] FLER .J ke By
a5 Dy '3“'-'? &I.l,z-".'k -":'.F Cigy '(Sfa.i&m’l'[?'fa G”.ﬂsf;da"’.ﬂh tag i iy ”“-‘Si‘ag ﬂu{“'rﬂra.r%'?«?;{‘:b;f?? %20y, G‘é‘s;a: !EG:E‘S}: G;E\;: L=l WWJ“

Xl Quark Confinement and the Hadron Spectrum Luca Lista 1 2




END-TO-END DIFFERENTIABILITY FOR LHC ANALYSES

Simulated sub-sample datasets
Samples
,” Effect of ‘:I i
‘ Systematics & POls for each observation
]
] Trainable ML J for each dataset
] Model

: A :
: Summary build and evaluate |
: Statistic

|

: J :
(] i
1 . o Inference |
] gradient optimization Loss :
;

’J

autodiff graph framework

Within this general framework, several approaches are possible, focus here is
DIRECT LEARNING OF SYSTEMATICS-AWARE SUMMARY STATISTICS

P. de Castro

08/02/18 Sergei Gleyzer QCHS 2018




The Bayesian Interpretation

Example (Absolute Loss: L(y,f) = |y — f| = +/(y — f)?)

For the absolute loss,
G(f) = P(X)/\/(y — )2 ply|x) dy,

ar =) [ L= ety ay o

Noting that (y — x)/|y — x| = 2H(y — f) — 1, where H(z) is the Heaviside
function, f(x,0) is the solution of | [ _ . p(y|x)dy = L

Conclusion If 1) the training data are sufficient and 2) f(x, ) is
sufficiently flexiblejand 3) we use the absolute loss then f(x, ) will

approximate the median of p(y|x).

08/02/18

Harrison B. Prosper (FSU) Bayesian Interpretation of DNN August 1, 2018 14 / 25



Neural network training

Starting from random boundary conditions for the N, replicas,
the ANN training ensures that only those functional forms minimising the X2 are selected

TR
R
L& \;' ?

X g(x, Q2= 2 GeV?2)

08/02/18
Juan Rojo 28 QCHS-XIII, Maynooth, 02/08/2018



Avoiding overfitting

For a flexible enough input functional form for the Parton Distributions,
one might end up fitting statistical fluctuations rather than the underlying physical law!

08/02/18 .
Juan Rojo 23 QCHS-XIIl, Maynooth, 02/08/2018



Bagkground Rejection

8

lTYlTY'lYII]Y'TI!'Y

0%

020

UF

UNIVERSITY of

FLORIDA

DNN vs Standard ANN

Background Rejection vs. Signal Efficiency

[« DNN: 5 hidden layers |
with 256 neutrons
'* SNN: 1 hidden layer t

MVA Method
—_— NN e

%—Dmmonq« \
e SNN LW
| = SNN Low + High |
i ) L 1 A i 3 l 3 | 1
0 020 0.0 060 080 1
Sigral Eficiency
08/02/18 Sergei Gleyzer

Extraction vs.
Feature Engineering

DNN vs BDT

Background Rejection vs. Signal Efficiency

EE
i
£
4l =
g L
&
?&»——
S -
060 —
P ettt et ———————— et -
- ngthod’TraitingTumlhl_AmunderROCCum.
o0&~  BDT 478 h 0.806
- |DNN | 146 h | 0.876
-
ol [ WWANetod |
~ |—BOT
.~ |=—DNN
=
0 ' 1 ' " l ' - . ' : ; | - - '
0 020 040 060 080 1
Sgral Emoency
QCHS 2018 17



Generative Adversarial -
Networks

 Extending the GAN architecture - provide a set of initial _—
parameters for the generator and discriminator:

- generator would not generate a random output, but a customized one >

-

- in our case: initial momenta of Monte Carlo particles

Discriminator

BTN S A T m b4 s
Ty (e TE S

Capend QRICE $HG—
‘3:3 6<° 10T e
M s ""

\'*"‘(;Arx' h.rv. ——

https: /Smilesnnewagpocounty Sles wordpress.com

Generator

o LT S ke
o mewAS

https./thechive Siles wordpress.com

Initial Parameters

J N 7
oy g ’
https//giphy.comygifsleonzrdo-dicapriccatch-me-ifyou-can-
Sleccharacters-tLhannWEWKn2

2 August 2018, XIII QCHS tukasz Graczykowski (WUT) 11/23




s Results

ALICE
* Mean Squared Error (MSE) from the original helix as a quality
measure

» Evaluation conducted on the separate test-set with ~15000 tracks
MSE visualisation:
Red - error
Grey- ideal helix
- original clusters °
Blue - generated clusters

Mean MSE Median MSE

Method [ = Speed-up
GEANT3 1.20 112 1
Random
(estimated) 2500 2500 N/A
condLSTM GAN  2093.69 207032
100
condLSTM GAN+ 22178 190.17
condDCGAN 795.08 738.71
25

condDCGAN+ 136.84 82.72

2 August 2018, XIII QCHS Ltukasz Graczykowski (WUT) 14/23



Learning Optimization

Data augmentation
G. Strong

® Correct application of augmentation
relies on exploiting invariances within the
data: domain specific

® Atthe CMS and ATLAS detectors, the
initial transverse momentum is zero,

therefore final states are produced
isotropically in the transverse plane: the

class of process is invariant to the rotation
in azimuthal angle
®  Similarly, the beams collide head on with

equal energy: therefore final states are
produced isotropically in Z-axis

08/02/18 Sergei Gleyzer QCHS 2018 20



Learning Optimization

Learning-rate cycles
G. Strong

® Loshchilov and Hutter 2016 instead ||
suggests that the LR should be decay as a : "
cosine with the schedule restarting once
the LR reaches zero L

® Huang et al. 2017 later suggests that the
discontinuity allows the network to
discover multiple minima in the loss ’
surface c1 Sunds:chRMgg:dt;m : ?&iﬁﬂ“ﬁ‘scmﬁ A

® 2016 paper demonstrates on image and

EEG classification g\ "‘ & & %m* on
o2 W ar . VJ
Lciegs gt -

Lower figure - Huang et al., 2017, arXiv:1704.00109

08/02/18 Sergei Gleyzer QCHS 2018 21



Optimization Results

G. Strong

verall Val. AMS
—— Mean Val. AMS

- Val. AMS at mean cut

—— Public AMS
—— Private AMS
---- 1st = 3.80581
-~ 2nd = 3.78912
-=== 3rd = 3.78682
1 2 3 4 5
RelU Swish Swish Swish Swish
Ensemble Ensemble Ensemble Ensemble Ensemble
Cos. Anneal. Cos. Anneal. Data Aug.
Data Aug. SWA 0

Model

08/02/18 Sergei Gleyzer QCHS 2018 22
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Collaborative/Open Data
Science
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UF Challenges

UNIVERSITY of

FLORIDA

Higgs ML Kaggle Challenge

® Launched in 2014, the Higgs ML Kagagle
competition was designed to help

stimulate outside interest in HEP Higgs
problems challenge | ===z

Higgs Boson Machine Learning Challenge

Use the ATLAS experiment to identify the Higgs boson

| |

* The data contains Simulated LHC co”ision Data  Discussion Leaderboard Rules Team My Submissions Late Submission

data for Higgs to di-tau and several
background processes

® Participants were tasked with classifying m,m;on f\r AT LAS
the events in order to optimise the przes 1 EXPERIMENT
Approximate Median Significance e —

Timeline -

®  The competition was highly successful, Winners
and helped introduce new methods to

HEP, as well as produce more widely used .
tools, such as XGBoost

|__

Sergei Gleyzer QCHS 2018 24
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FLORIDA

https://www.kaggle.com/c/trackml-particle-identification

08/02/18 Sergei Gleyzer QCHS 2018
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https://www.kaggle.com/c/trackml-particle-identification

IIIIIIIIIIII

Unsupervised Learning and
Anomaly Detection

08/02/18 Sergei Gleyzer QCHS 2018 26



LINIVERSITA

Example of the model fit (15

G. Kotkowski

Backgroung data Experimental data

<
N p—
X o
o
1- —

1 ] I I | | I I I |

4 2 0 2 4 4 2 0 2 4

X1 X1

Figure: Examples of background and experimental data with the
contoured background and signal distributions.

- e
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Figures of Merit
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Binary classifier evaluation — reminder

Discrete classifiers: the confusion matrix

: Binary decision: true class: Positives true class: Negatives
signal or background (HEP: signal Stot) (HEP: background Btot)
PPV - classified as: positives True Positives (TP)
o (HEP: selected) (HEP: selected signal Ssel)
'+ FN
R classified as: negatives True Negatives (TN)
[N+ FF (HEP: rejected) (HEP: rejected bkg Brej)

Prevalence =, Sos + Dhe

Scoring classifiers: ROC and PRC curves

1 1 e
Continuous output: Tos S os _
. . w v :
probability to be signal 2oef/ ROC £06.  PRC
= 5
. - £ 04 04
Vary the binary decision 3 5
. = -+ Btot = Stot a ===+ Btot = Stot
by varying the cut E 0.2-—— Btot = Stot * 10 Insensitive to > 0.2) —— Biot = Stot * 10
. e | === Btot = Stot * 100 prevalencea! - Brot = Stot * 100
on the scoring classifier ol ~ e
0 0.2 0.4 0.6 0.8 L 0 0.2 0.4 0.6 0.8 1
FPR (background efficiency) TPR (efficiency or recall)

A. Valassi — Fisher information metrics QCHS XlIl — Maynooth, 3" August 2018




Examples of issues in AUCs — crossing ROCs

 Cross-section measurement by counting experiment
—Maximize FIP1=¢.,*p — Minimize the statistical error Ac?

« Compare two classifiers: red (AUC=0.90) and blue (AUC=0.75)
—The red and blue ROCs cross (otherwise the choice would be obvious!)

» Choice of classifier achieving minimum Ac? depends on S,,/B,,;
—Signal prevalence 50%: choose classifier with higher AUC (red)
—Signal prevalence 5%: choose classifier with lower AUC (blue)
—AUC is irrelevant — and ROC is only useful if you also know prevalence

1= 1
Lstot=0 50°(Stot+Btot) | L stot=0.05*(5t0t +Btot]
E — MAX=0,684 (RED) ] — MAX=0.400 (RED)
_os 308 | ==+ MAX=0.500 (BLUE) 508 ==+ MAX=0.499 (BLUE) FIP1 | AUC
5 7 g BLUE:
506 ‘ g 208 | Range
: RED: | § \ : % LOWEST nends | vEs | vEs
2 [ oc HIGHEST | 3 | o e o eper 7L A? n .11
S04 504 ur 5 0.4 ur o er
¢ Ave 12 RED: | = 7 s better | YES
02 € 02 LOWEST | £
— AUC=0.900 (RED) | E Ac? £ . Numerically YES
.; - Auc=orsoewe) | - s ™ VS T , meanigful
a o2 0.4 0.6 0B 1 o4 1 1 & 1
TPR (slgn neyl PR 150 ¥

FPR {1 - backgrownd rejection)

wf_ :j_,w A. Valassi — Fisher information metrics QCHS XIll — Maynooth, 3¢ August 2018  12/20



When AB ~ 0 is negligible @
@ Approximation of the Cowan-Cranmer-Gross-Vitells asymptotic formula for known B
V@A = 1/2((S+B)in(1+ 5) - S

@ lts expansion in In(3) is %(1 +0(3))

S .
@ The 518 hence good only for S << B

@ In literature has been used in general for large S + B, hence failing when S ~ B

- Comparison between Z,, and Zg,
195

100 1004 -

25

a0

75

20

Significances

— Z |gza), S=10
— Z lgza}, S=100
— Z iqza}, S=1000
.« Z {sb}, S=10

+ Z {sb}), 5=100
« Z {sb}, 5=1000

60 —

Signa

Significance

40

20

200 400 G600 800 1000

T T T T
250 s00 750 1000

Background Background

Vischia Pseudosignificances August 1st, 2018 10/17
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UF TMVA

UNIVERSITY of

FLORIDA

Status deep learning library

Dense Conv RNN LSTM GAN VAE

* Deep learning library since 2016
CPU

e Recent additions
GPU

e Convolutional and recurrent layers

* Development ongoing!

- New! Upcoming

08/02/18 Sergei Gleyzer QCHS 2018 33



Number of Events Trained / second

TMVA

UNIVERSITY of

FLORIDA _
Batch size 100

-
=]
m

_
=]
n

-
(=]
r

T

Mg 4
s
Pug T Chug,

L7 A,
by ERas g g
Py &Py Plzy ™ Pug

2 Conv Layer - 12 3x3 filters - 32x32 images - batch size = 32

Number of Events Trained / second

TMVACPU (P) KERAS CPU (P) KERAS GPU

08/02/18 Sergei Gleyzer

—
=)
|

Number of Events Trained / second
=

ey
=]
s

Ty, K, My,
bq Gy Rﬂs GPU A G':'U,@)

I, 1
Py Rqscpﬂ-'rm

SRq
8%-2:-
Prediction Time (5 Dense Layers - 200 units)

Number of Events P[:edicted / second
s

TMVA OPENBLAS LWTNN TMVA MACOS-BLAS



UF Python in ML

UNIVERSITY of

FLORIDA

Particularly machine learning

Q@ learn PYTHGRCH Keras Tenf S Caffe? ©LUON

Ch?l:er CNTK @ ONNX (@ cesom )?G%oost

machine learning Python
B Google Trends

g

50 H H
machine learning R

POTT I, & . .
wrodn ol AN N AR N O el machine learning C++

Apr7.2013 ] ~ Dec28 2014 Sep 18, 2016

08/02/18 Sergei Gleyzer QCHS 2018 35 12/24



UF Pandas

UNIVERSITY of

FLORIDA

Pandas is a bigger thing than Spark

B Google Trends

75

50

25 AV "Spark DataFrame"
Aug 4, 2013 Jan 3, 2016 - £ Jun 3, 2018

J ROOT TTree

pandas |4 ()il

08/02/18 Sergei Gleyzer QCHS 2018 36




UF Columnar Arrays

UNIVERSITY of

FLORIDA

Loading and computing columnar arrays is fast

RAM memory loading and computing (jagged) pz = pt*sinh(eta) time to complete
1000 MB — 100 sec
C PyROOT load and compute -j_
¢ Python list of lists of dicts . .
I «root_numpy's array of arrays JaggedArray compute in Python for loops e _=. 10 sec
¢+——o Python list of lists of __slots__ classes .
100 MB root_numpy compute in loop over ufuncs ]
- Python list of lists of dicts in Python for loops
Z Python list of lists of __slots__ classes in Python for loops 1 sec
¢+——e serialized JSON text (for reference) root_numpy load
¢—— std: :vector<std::vector<struct>>
ROOT RDataFrame load and compute
! « JaggedArray of Table of pt, eta, phi ROQOT TTreeReader load and compute 0.1 sec
10MB ROOT TBranch::GetEntry load and compute o load
- uproot load e—_ ufljnc
= JaggedArray compute as Numpy-like ufunc e——
B JaggedArray compute in Numba-accelerated Python for loops
3MB - 0.01 sec

08/02/18 Sergei Gleyzer QCHS 2018 37



RooStats (INFN

* Most of the methods adopted in High Energy Physics
are implemented in the RooStats C++ framework

« Convenient modeling of PDF via RooFit package
— PDFs from templates determined from ROOT histograms
(RooHistPdf class)

— PDF models and data with parameter definition
stored in a convenient file format (Rooworkspace)

* Asymptotic approximations available, allow to save
CPU time avoiding intensive toy Monte Carlo
generation

— G. Cowan et al., Eur.Phys.J.C71:1554,2011

X Quark Confinement and the Hadron Spacirum LUCE LiStE g



GPU Computing in HEP analysis: the GooFit framework 2
Application Code
[E— Sequential

¥ Hetherogeneous GPU-acccelerated computing is the use of GPU
a Graphics Processing Unit to accelerate scientific

applications (among other apps). - portion
1
We explored the capabilities of GPU compuiting in the )
context of the ‘end-user HEP analyses’ by using GooFit. 1
Compute N
intensive N
i [
CPU GPU portion S
1

CPU
«“-';“"'—‘:«.»U- is a data analysis tool for HEP, that
interfaces ROOT/RooFit to CUDA parallel computing
platform on nVidia GPU. It also supports OpenMP.

ser code|-
zl 1
L

= Hi

[ Method | Fitrun | 7| calcuiatenn
GaaFit E

B T

User-defined

[memory

4

fit params
tuning |5 transfers]

PDF/MNL
evaluation

----- -8 Has-a relation
mlp-  Program flow
m=p  Data flow

1.2 Order of operation

FitControl

1: Repeated operatien

Since v2.0 Goofit is completely integrated
in# python through PyBindings and it
can run within =+  notebooks that
makes its use even easier.

From the user’s perspective? Applications simply run significantly
faster! How much faster ? It depends - of course - on the
application... We tested it firstly with the estimation of the local
significance of a known signal.

XITT QCHS 31 Jul - 6 Aug 2818 — Maynhooth University Adrianc Di Florio a2



A first use case: GooFit performances

®» The optimized GooFit applications running, by means of the MPS, on GPUs, hosted by the servers used in
the presented test, has provided a striking speed-up performance with respect to the RooFit application
parallelized on multiple CPUs by means of PROOF-Lite.

®» A first performances’ comparison is carried out on 2 A second comparison is done from the point of view
both the servers hosting both type of GPUs (TK20 & of the end-user/analyst having at disposal 72 CPUs
TKA40) as a function of the # of pseudo-experiments and 3 GPUs (1 TK40 & 2 TK20) on 2 servers
produced keeping constant the number of

WDrkEFE;prﬂEESSEE.
10000 10000000
o TealakAD va RaoAWPrankLite {18 CPUs) _ ¢ GPU 1 mant]
® Tasia K30 va va AooFiiProof-Lite (16 CPUs) * CPU ~11 davs
Rl et ialuiniel el ST S SO :.:.f.'..t'. 1 week
— D, ) — _n’-
% & » - & - & reB0 % e, 2 days
[ %) - . - - = - w40 E I .-" - 1 day
‘j“..; @ GooFit TK40 vs PROOF-Lite (16CPUs) o doi® i ] 10 hou
' o ™ A S . A
= o ® GooFit TK20 vs PROOF-Lite (16CPUs) = . ¥ ~6hours .
3 ® TK40 vs TK20 (GooFit /MPS) E Ut i 1 hour
E ; - } "
Q 1nan
=1 T B T r! TTTTETT-FETTT PRTET TP R TP PEPEEPRET V) E - o
o . a S — . 1d mins
m L
w 100 .
L
2,10 " *
100 1 G000 L HE 100 e 1000 10K LLEAELH LLE ] 1 GOCO00D
# of processed MC toys # of processed MC toys

XITT QUCHS 31 Jul - & Aug 2818 — Maynhooth University Adrianc Di Florieo a5



Issue: awareness of limitations

ol

TH1::Divide assumes uncorrelated errors

}‘ B |IIII|I LI I ) | 1 I||II |II T |II T LI |
5 T T T
] s 5 ik PO —= ; -
£ 0951 | e -
LL] - |
09k .
0.85[ = .
D.B __ = ot AL TR satll i W 0h Tag & P‘I’Dbﬂ' et e __
B.75 P Yoot Lot f e o ) I
N SRR A A L SN I A :
‘0 50 100 150 200 250 300 350 400 450 500

P, [GeVi/c]

(AT
garlrubir it fir Techrcdogin

M. Mozer

Plot made public as CMS

physics analysis summary

Got a lot of help from TEfficieny => easy to use interface for all
reasonable intervalshistograms

Succesfully erradicated: poor error estimates for efficiencies  ccisxu
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Measured and Unfolded pr Spectra

Measured pr spectra Unfolded pr spectra

=
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e Multiplicity dependent charged-particle pt spectra up to Nch = 80

® Best possible resolution (ANch = 1)

QCHS18 | 2018-08-01 | Bayesian unfolding of charged-particle pr spectra with ALICE at the LHC | Mario Kriiger



MC Studies

O
Closure test:
: S F ALICE simulati
e Unfolding of pr spectra from MC > 0.85F pp, 15~ 5.02 TeV, [ < 0.8
G F 015GeVic<p, <10GeVic @.A
' . — a)
e Comparison with MC truth pr-spectra 3 F <PT> gk
™~ 0.75
¢ Difference: Important indicator for b
systematic uncertainty of procedure 0.65F-
u.ﬁf—
0.55F & ¢ truth (PYTHIA8 Monash-2013)
- + unfolding method
0.5 ¢ re-weighting method

T

QCHS18 | 2018-08-01 | Bayesian unfolding of charged-particle pr spectra with ALICE at the LHC | Mario Kriiger
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Undercoverage of existing methods

(a) SVD, coverage and MSE

; 10000 .(b) SVD, weighted CV
?& 1 ! N sEEmEEEEIUIII I aatasAEEEEEEEE R Rt A an
8 038 S0 e go08mH] F g Exatd
- o T
5 g O T g I
= 0.6 e G 06 | P .
™ - 2 T =
& 0.4 6000 T 8 e T B T §
@ = o 04 - | H
e e © w
o 0.2 4 O -
> b ; = =
(] , s c 0.2
o 0 e L 4000 EE W
. . . . . . 0 | .
107 10° 10' 102 10° 104 105 5 0 5

Regularization strength &

@ Optimal point estimation # optimal uncertainty quantification

e In terms of the uncertainties, standard methods for choosing 4 tend to
regularize too heavily

@ Similar conclusions hold for other common methods (D'Agostini, TUnfold,...)

Mikael Kuusela (SAMSI/UNC/CMU) August 2, 2018 8 /18



Binwise coverage, AMC =0

Binwise coverage, ScanlLcurve Binwise coverage, Undersmoothing
= 0.8 ne = 0.8 0.8
2 2
& g
g0 g
- -
[ [

=
N

Figure: L-curve Figure: Undersmoothing

Mikael Kuusela (SAMSI/UNC/CMU) August 2, 2018 11/ 18




Wide bins via fine bins, perturbed MC

2500

2000

1500

Intensity

300

Urifalded
True

1000

e

Binwise coverage
= = = = = = =
] Ca o o L p] | e ]

=

=

Wide bins via fine bins gives both correct coverage and intervals with
reasonable length

Mikael Kuusela (SAMSI/UNC/CMU)

August 2, 2018 17 / 18



Other Topics Covered

* Confidence Intrervals for Linear Poisson F.

Matorras
* History of CLs A. Read
» Statistics for IN Frontier L. Stanco
« Statistics: Idealism and Reality M. Mozer
» Networked Data Science A. Ustyuzhanin

 Gaussian Processes for Q/G string
parameters V. Kovalenko

* Signal Morphing L. Brenner

08/02/18 Sergei Gleyzer QCHS 2018
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Insights

51>
« |nternational Training Network of Statistics for High Energy

Physics and Society

ESR hosts institutes:

 INSIGHTS is a 4-year Marie ¢« CERN[ (GE)
C . DE: MPP (MU)
Sklodowska-Curie Innovative "\\cvwa o),

Training Networks project for ~ PANGEA (Rm),
UNINA (NA)
the career development of 12 ;. \iuer (am)

Early Stage Researchers NO: UIO (05) 4' \

MO

SE: LUND (LU)
(ESRs) at 10 partner UK: RHUL {1O),
institutions across Europe. UNIED (ED)
« |INSIGHTS is focused on Other partners:
: . DE: C2PAP (MU)
developing and applying IF: DO, NGV (A}

latest advances in statistics,  NLKPMG (aM)
o - b NO: CICERO (QS)
and in particular machine RU: YNDX (MO}

learning, to particle physics =~ UK:FISCALILO)
« CERN is part of the network
with deep interconnection

with the ROOT development
team

Academic secondments:

Non-academicand
interdisciplinary
secondments:

https://www.insights-itn.eu/
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UF Summary

IIIIIIIIIIII

* Many exciting results and ideas

» Expanding number of machine learning
applications

 Great progress and an opportunity to
reexamine things for LHC Run 3/DUNE

» Thanks to all for making Track H a xﬁ
success (special thanks to... -
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