

PHYSICS/ASTRONOMY BLDG. RM C411 • BOX 351550 UNIVERSITY OF WASHINGTON • SEATTLE, WA 98195-1550 • USA

www.int.washington.edu • 206-685-3360

Stephan Stetina

Institute for Theoretical Physics Vienna UT

Transport in Dense Nuclear Matter

Quark Confinement and the Hadron Spectrum XIII, 2018, Maynooth University

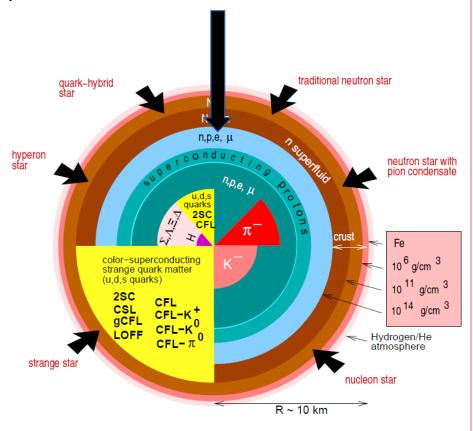
Ermal Rrapaj (University of Guelph), Sanjay Reddy (INT Seattle)

[S. Stetina, E. Rrapaj, S. Reddy, Phys.Rev. C97 (2018) no.4, 045801]

[S. Stetina, in preparation]

Outer layer of of neutron star cores

homogeneous plasma of electrons, muons, protons, and neutrons



[Weber, J. Phys. G27, 465 (2001)]

stable homogeneous nuclear matter

- degenerate QED plasma (e^-, μ^-, p^+)
- $ullet \ p$, n form strongly interacting Fermi liquid
- ightarrow ho ho equilibrium and charge neutrality

$$\mu_n-\mu_p=~\mu_e=\mu_\mu$$
 , $n_e+n_\mu=n_p$

critical densities

- \rightarrow stability of hom. phase (spinodal point) $n_c \sim 0.6 \, n_0$
- ightarrow onset of muons ($\mu_e=m_\mu$) $n_\mu\sim 0.75~n_0-0.8~n_0$
- → electrons under NS conditions are always relativistic, degenerate, weakly interacting
 → important contribution to transport

Neutron star phenomenology

Transport phenomena in the outer core of neutron stars

transport is determined by

<u>electromagnetic response:</u>

- screening & damping
- collective modes

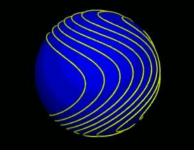
correlations of strong & EM int.

Scattering rates of fermions

transport is relevant for

neutron stars $(T \ll \mu)$

- damping of hydro/R modes
- spin evolution
- thermal relaxation



supernovae

Energy loss of e^- and μ^- in high density matter

Separation of scales in degenerate plasma:

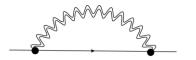
- hard region (free space limit): $p = (p_0, p) \sim k_f$
- soft region (medium effects): $p \sim e k_f$

```
transport in cold and dense matter (e.g., at n=n_0: \mu_e\sim 120 MeV, T<1 MeV ) = scattering close to the Fermi surface
```

- \rightarrow fermions (and holes) $p \sim k_f$ are always *on-shell*, there is no damping at order α_f
- → photon is either hard (large angle) or soft (small) angle

 collective modes in the soft region: Photon (transverse), Plasmon (longitudinal)

Relevant contribution to the fermion self energy: bare fermions + resummed photon



RPA photon propagator

Relativistic one-loop resummation ("Random Phase Approximation", RPA)

• Dressed photon propagator (Coulomb Gauge):

$$\widetilde{D}^{\mu\nu}(q_0,q) = \frac{q^2}{q^2}(q^2 - \Pi_L)^{-1}P_L^{\mu\nu} + (q^2 - \Pi_L)^{-1}P_L^{\mu\nu}$$
, $\Pi^{\mu\nu}$ photon pol. tensor

→ Weak screening approximation of longitudinal/transverse propagators:

$$\begin{array}{c} D_L \propto \frac{1}{q^2-m_D^2} \;, \qquad \qquad D_\perp \propto \frac{1}{q^2-i\,\left(\frac{q_0}{|\boldsymbol{q}|}\right)q_{\rm f}^2} \;, \qquad \qquad m_D^2 = \frac{4\alpha_f}{\pi}\mu k_f \;, \qquad q_{\rm f}^2 = \alpha_f k_f^2 \end{array}$$

[E. Flowers and N. Itoh, Astrophys. J.206, 218 (1976)] Transport in dense matter

[P.S. Shternin, D.G. Yakovlev Phys.Rev.D78 (2008), 063006] Shear viscosity in NS cores [P.S. Shternin, D.G. Yakovlev Phys.Rev.D75 (2007), 103004] Electron-muon heat conduction in NS cores

ightarrow Hard dense loop (HDL) approximation $q \ll k_f$ (leading order contribution in soft region)

[P.S. Shternin, D.G. Yakovlev, Phys.Rev.D74 (2006), 043004] Transport in degenerate electron plasma [H. Heiselberg and C. J. Pethick, Phys.Rev.D48 (1993)] Transport in QCD plasma [A. Harutyunyan, A. Sedrakian, Phys. Rev. C 94, 025805 (2016)] Transport in NS crust

Damping rate of degenerate fermions

- 2 lm
$$\left[\begin{array}{c} \end{array}\right]$$
 = $\left[\begin{array}{c} \end{array}\right]^2$ optical theorem: int. rate. $\Gamma \propto Im \ \Sigma$

$$\Gamma_{+} = \frac{1}{2} Tr \left[\Lambda_{+} \gamma_{0} \operatorname{Im} \Sigma_{R} \right] = -\frac{1}{2p_{0}} Tr \left[(\gamma \cdot p + m) \operatorname{Im} \Sigma_{R} \left(p_{0}, \boldsymbol{p} \right) \right], \qquad p_{0} = \epsilon_{\boldsymbol{p}}$$

$$photon spectrum \qquad \rho^{\mu \nu} = \rho_{L} P_{L}^{\mu \nu} + \rho_{\perp} P_{L}^{\mu \nu}$$

ightarrow week screening & close to Fermi surface $\epsilon_{m p} - \mu \ll m_D$, $u = q_0 / |\boldsymbol{q}|$

$$\Gamma_{L} \simeq \frac{e^{2}}{4\pi} \frac{m_{D}^{2}}{v_{f}^{2}} \int_{0}^{|\epsilon_{p}-\mu|} du \, u \, \int_{0}^{\infty} d|\mathbf{q}| \frac{1}{(m_{D}^{2}+\mathbf{q}^{2})^{2}} = \frac{e^{2}}{32} \frac{1}{m_{D} v_{f}^{2}} \left(\epsilon_{p} - \mu\right)^{2}$$

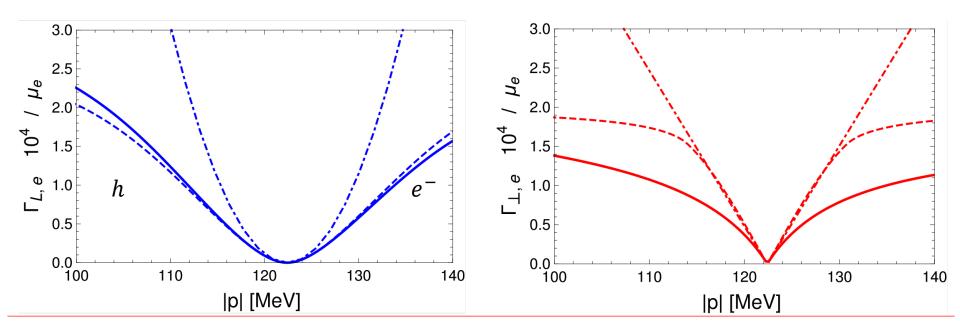
$$\Gamma_{\perp} \simeq \frac{e^2}{4\pi} m_D^2 \ v_f^2 \int_0^{|\epsilon_p - \mu|} du \ u \int_0^{\infty} d|\mathbf{q}| \ |\mathbf{q}| \frac{4 \ \mathbf{q}^2}{16 \ \mathbf{q}^6 + u^2 \ \pi^2 m_D^2 \ v_f^2} = \frac{e^2}{12\pi} \ v_f |\epsilon_p - \mu|$$

Damping: weak screening vs. HDL vs. full RPA

- \rightarrow nonrelativistic: electric interactions dominate, magnetic interactions are down by $\left(\frac{v}{c}\right)^2$
- -> relativistic: damping due to the exchange of plasmons and photons is equally important

[H. Heiselberg, G. Baym, C. J. Pethick, J. Popp, Nuc. Phys. A 544 (1992)]

electrons at n = n0



solid: full one-loop dashed: HDL dot-dashed: weak screening

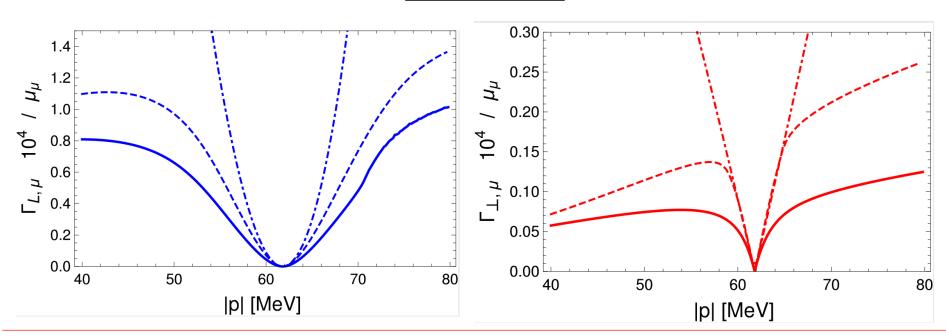
→ HDL approximations work much better in the longitudinal channel!

Longitudinal and transverse damping (II)

- \rightarrow nonrelativistic: electric interactions dominate, magnetic interactions are down by $\left(\frac{v}{c}\right)^2$
- > relativistic: damping due to the exchange of plasmons and photons is equally important

[H. Heiselberg, G. Baym, C. J. Pethick, J. Popp, Nuc. Phys. A 544 (1992)]

muons at n = n0



- $ightarrow |q| \ll k_f$ hard to fulfill, HDL don't work really well in either channel
- $\rightarrow \Gamma_{\rm L}$ overtakes $\Gamma_{\rm L}$

RPA photon propagator: multi species

Photon propagator in the presence of several fermion species

$$\widetilde{D}^{\mu\nu}(q_0,q) = \frac{q^2}{q^2} (q^2 - Tr [\Pi_L])^{-1} P_L^{\mu\nu} + (q^2 - Tr [\Pi_L])^{-1} P_L^{\mu\nu}, \qquad \Pi \to \text{diag}(\Pi_e, \Pi_\mu, \Pi_p)$$

RPA resummation in multi-component plasma is well established:

[C. Horowitz, K. Wehrberger, Nucl. Phys. A 531, 665 (1991)]

[S. Reddy, M. Prakash, J.M. Lattimer, J.A. Pons, PRC 59, 2888 (1999)]

Protons are quasiparticles (strongly interacting Fermi liquid)

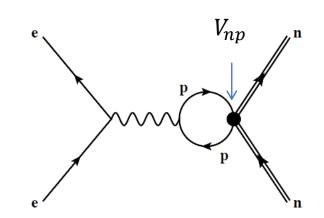
- \rightarrow Proton fraction n_p , effective masses m_p^* , residual interactions V_{pp} , V_{pn} extracted from Landau energy functional based on Skyrme type interactions
- → Here: NRAPR, SKRA, SQMC700, LNS, KDE0v1

[M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, P. D. Stevenson, PRC 85,035201]

QED + strong interactions

What's the role of the neutrons within RPA?

- Coupling strength to photon tiny in free space
- BUT: Interactions induced by the polarizability of protons [B. Bertoni, S. Reddy, E. Rrapaj, Phys. Rev. C 91, 025806 (2015)]
- use *resummed* RPA polarization tensor for protons [S. Reddy, M. Prakash, J.M. Lattimer, J.A. Pons, PRC 59, 2888 (1999)]



$$\widetilde{\Pi}_p = \frac{\Pi_p (1 - V_{nn} \Pi_n)}{1 - V_{nn} \Pi_n - V_{pp} \Pi_p + (V_{nn} V_{pp} - V_{np}^2) \Pi_n \Pi_p}$$

$$\widetilde{D}^{\mu\nu}(q_0,q) = \frac{q^2}{q^2} \left(q^2 - \Pi_{e,L} - \Pi_{\mu,L} - \widetilde{\Pi}_{p,L} \right)^{-1} P_L^{\mu\nu} + \left(q^2 - \Pi_{e,\perp} - \Pi_{\mu,\perp} - \widetilde{\Pi}_{p,\perp} \right)^{-1} P_{\perp}^{\mu\nu}$$

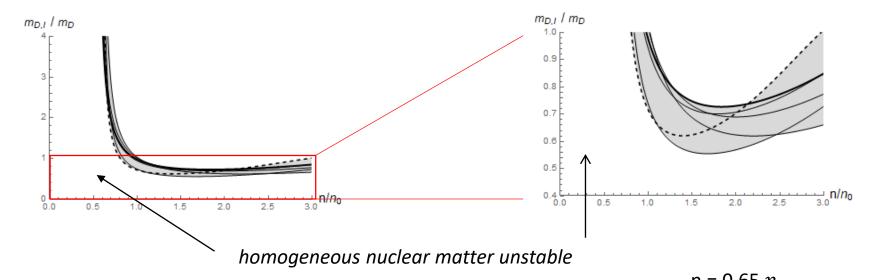
effective interaction

$$L_{\gamma-n} = e^2 V_{np} \left(\overline{n} \gamma_{\mu} n \right) A_{\nu} \left(\prod_{L,p} P_L^{\mu\nu} + \prod_{\perp,p} P_{\perp}^{\mu\nu} \right)$$

 \rightarrow changes to transverse spectrum are negligible since for protons $\Pi_{\perp} \ll \Pi_{L}$.

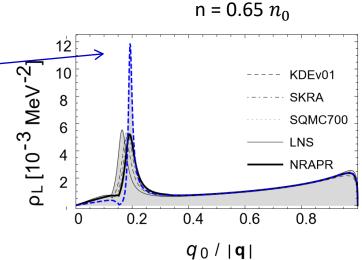
"Induced" (strong) screening

$$\text{TD definition:} \quad \widetilde{\Pi}_{\text{L, p}}(q_0 = 0 \;) = \left[\frac{\partial \mu_p(\mu_n)}{\partial n_p} \right]^{-1} = \frac{m_p^2 \; (1 + V_{nn} \; m_n^2 \;)}{1 + V_{nn} \; m_n^2 + V_{pp} \; m_p^2 + \left(V_{nn} V_{pp} - V_{np}^2 \right) m_n^2 \; m_p^2 }$$



pure QED (NRAPR)

→ Impact of induced interactions most pronounced at densities close to the crust-core boundary

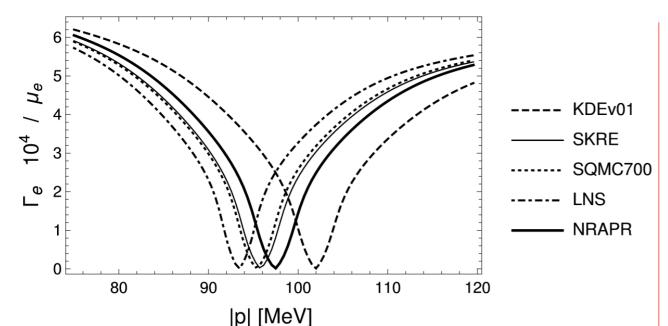


Damping rate of electrons: multiple species

energy loss of electrons due to collisions with other electrons, muons, and protons

$$M_D^2 = \sum_a m_{D,a}^2$$

$$ightarrow$$
 total screening mass: $M_D^2 = \sum_a m_{D,a}^2$ $\rho_L = -\frac{1}{\pi} \frac{Tr[Im \Pi_L]}{(Tr[Re\Pi_L] - q^2)^2 + (Tr[Im \Pi_L])^2}$

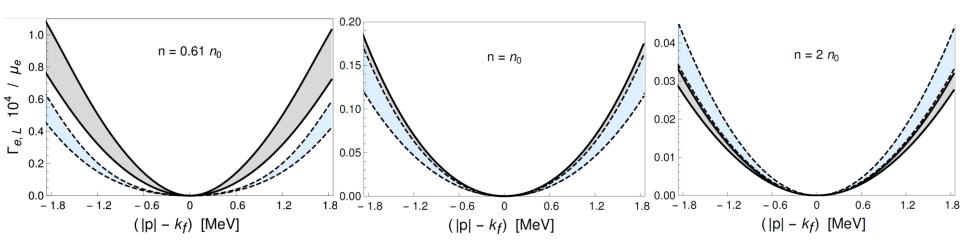


- total scattering rate of electrons close to the crust-core boundary
- easy to implement in transport calculations (fit as function of $\epsilon_{m p} \, - \mu$)

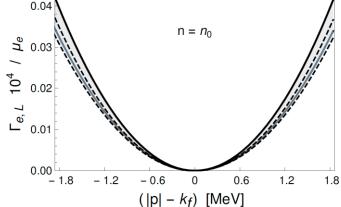
Impact of induced interactions

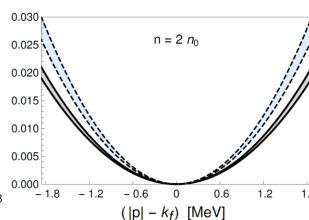
- $\rightarrow \Gamma_L$ strongly modified near crust-core boundary
- → follows the evolution of the induced screening

electrons



muons





Outlook

 Existing calculations of transport effects in dense nuclear matter can be refined by taking into account dynamical screening effects and induced interactions

[S. Stetina, E. Rrapaj, S. Reddy, work in progress]

Where to go from here:

- Improve on implementation of nuclear interactions (dynamical screening)
- Account for proton superconductivity → Meissner effect

$$D_{\perp} = \frac{1}{q^2 - \Pi_{\perp, e} - \Pi_{\perp, \mu} - \Pi_{\perp, p}}$$

 \rightarrow induced $e^- - n$ scattering dominates

[B. Bertoni, S. Reddy, E. Rrapaj, Phys. Rev. C 91, 025806 (2015)]

include magnetic fields

go raibh maith agat! (Thank you!)

