AXIONS AND COSMOLOGY

Massimiliano Lattanzi Istituto Nazionale di Fisica Nucleare- Sez. di Ferrara

XIIIth Quark Confinement and the Hadron Spectrum

Maynooth University, August 3rd, 2018

Axion production

A cosmological population of axions (and ALPs) can be produced through several mechanisms:

- Production from the thermal bath (e.g. through pion-pion scattering for QCD axions: $\pi + \pi \rightarrow \pi + a$)
- Decay of topological defects (TDs: cosmic strings and domain walls)
- Decay of a heavy particle (e.g. moduli; generic prediction of string and Mtheory)
- Misalignment mechanism (very generic, basically works for all pNGBs; inherently non-thermal): coherent initial displacement of the axion field from its minimum

Axions as Dark Matter

- Axions produced via misalignment behave as cold dark matter once the field starts oscillating around the minimum:

 $\ddot{\theta} + 3H\dot{\theta}_a + m_a^2(T)\sin\theta_a = 0,$

Given the PQ scale f_a , the present energy density $\Omega_{\rm mis}$ of misalignment axions can be computed given:

- the initial misalignment angle θ_i (if PQ symmetry is broken after inflation, see next slide). Free parameter (initial condition)
- the topological susceptibility $\chi(T) = m_a^2(T) f_a^2$. In principle, it can be computed from the lattice. However, no consensus in the literature (see GM's talk)

- Axions from TDs decay are also cold, and their density is usually parameterized as:

$$\Omega_{a} = \Omega_{\rm mis} + \Omega_{\rm dec} \equiv \Omega_{\rm mis} (\mathbf{1} + \alpha_{\rm dec})$$

Computation of α_{dec} requires numerical simulations of the PQ phase transitions. Values quoted in the literature range from 0.16 to 186.

- Ω_{CDM} is one of the best known parameters of the SCM (1% precision). It represents an upper bound for Ω_a . Corresponding lower limits on m_a are in the ~few x 10µeV ballpark

Axions and Inflation

The PQ scale f_a and the Hubble scale during inflation H_l determine whether the PQ symmetry is broken or not during inflation:

- pre-inflationary axion, $f_a > H_l/2\pi$: the PQ symmetry is broken during inflation and not restored afterwards. θ_i is constant across the whole observable Universe, its value being a free parameter of the model. Isocurvature perturbations are produced.
- post-inflationary axions, $f_a < H_l/2\pi$: the PQ symmetry is broken after inflation, θ_i^2 should be replaced by its spatial average. Topological defects are produced.

The Hubble constant during inflation is constrained by the non-observation of tensor modes in CMB experiments (Planck+BK14, see Planck 2018 X)

$$H_{I} < 2.7 imes 10^{-5} M_{
m Pl}$$
 (95% CL)

The isocurvature fraction β_{iso} (fraction of total power in isocurvature fluctuations) is also constrained by Planck:

$$\beta_{\rm iso} < 0.038$$
 (95% CL)

Axion parameter space

Image credit: L. Visinelli (see Visinelli & Gondolo PRD 2009, PRL 2014)

Axions as Dark Radiation

Axions produced by the thermal bath or through decay of heavy particles are "hot" so they can only represent a subdominant fraction of the total matter content of the Universe

- At early times, they would contribute to the total radiation density, parametrized by the effective number of relativistic species ("neutrino families") N_{eff}
- Present observations are consistent with no exotic radiation components: N_{eff} = 2.99 +/- 0.34 @95%CL (Planck 2018VI)
- At late times, hot axions would suppress structure formation in a similar way to what neutrinos do

 $m_a < 1.7 \text{ eV} @95\% \text{ CL}$ (Di Valentino et al 2016, uses Planck 2015 data)

Axions as Dark Radiation

- Future CMB experiments are expected to reach a 1σ sensitivity on N_{eff} of ~0.2
- This would allow to detect thermal relics up to arbitrarily high decoupling temperatures (Baumann, Green,Wallisch 2017)

In the future, a EUCLID-like survey together with Planck data could detect m_a ~ 0.15 eV with high significance (Archidiacono et al., 2015

Ultralight axions

The cosmological phenomenology of axions in the mass range $[10^{-33} - 10^{-18}]$ eV (ultralight axions, or ULAs) is somehow different

- They can drive the present expansion of the Universe, acting as a quintessence field
- They can drive inflation
- They have a peculiar effect on structure formation ("fuzzy dark matter")

ADDITIONAL SLIDES

