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Axion production

A cosmological population of axions (and ALPs) can be produced through several
mechanisms:

* Production from the thermal bath (e.g. through pion-pion scattering for QCD
axions:t + T > m+ a)

* Decay of topological defects (TDs: cosmic strings and domain walls)

* Decay of a heavy particle (e.g. moduli; generic prediction of string and M-
theory)

* Misalignment mechanism (very generic, basically works for all pNGBs; inherently
non-thermal): coherent initial displacement of the axion field from its minimum



AXxions as Dark Matter

- Axions produced via misalignment behave as cold dark matter once the field
starts oscillating around the minimum:
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- Axions from TDs decay are also cold, and their density is usually parameterized as:
Qa — Qmis + Qdec = Qmis(1 + CVdec)

Computation of a g, requires numerical simulations of the PQ phase transitions.
Values quoted in the literature range from 0.16 to 186.

- QcpMm is one of the best known parameters of the SCM (1% precision). It represents
an upper bound for €2,. Corresponding lower limits on m, are in the ~few x 10peV
ballpark



AXxions and Inflation

The PQ scale f, and the Hubble scale during inflation H, determine whether the PQ
symmetry is broken or not during inflation:

 pre-inflationary axion, f,> H/2n: the PQ symmetry is broken during inflation and not
restored afterwards. 0, is constant across the whole observable Universe, its value being
a free parameter of the model. Isocurvature perturbations are produced.

* post-inflationary axions, f, < H/2n : the PQ symmetry is broken after inflation, 6.2 should
be replaced by its spatial average. Topological defects are produced.

The Hubble constant during inflation is constrained by the non-observation of tensor
modes in CMB experiments (Planck+BK14, see Planck 2018 X)

H, < 2.7 x 107°Mp, (95% CL)

The isocurvature fraction 3
constrained by Planck:

(fraction of total power in isocurvature fluctuations) is also

iso

Biso < 0.038 (95% CL)



Axion parameter space
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AXxions as Dark Radiation

Axions produced by the thermal bath or
through decay of heavy particles are "hot”
so they can only represent a subdominant
fraction of the total matter content of the
Universe

* At early times, they would contribute to
the total radiation density, parametrized
by the effective number of relativistic
species (“neutrino families”) N

* Present observations are consistent with
no exotic radiation components:
N = 2.99 +/- 0.34 @95%CL
(Planck 2018 VI)

¢ At late times, hot axions would suppress
structure formation in a similar way to
what neutrinos do
m,< 1.7 eV @95% CL
(DiValentino et al 2016, uses Planck
2015 data)
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AXxions as Dark Radiation

Future CMB experiments
are expected to reach a 1o

sensitivity on N of ~0.2
This would allow to detect =
thermal relics up to 5

[

arbitrarily high decoupling Ky
temperatures (Baumann,
Green,Wallisch 2017)
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In the future, a EUCLID-like survey together with Planck data
could detect m, ~ 0.15 eV with high significance

(Archidiacono et al., 2015



Ultralight axions

The cosmological phenomenology of axions in the mass range [10-33— 10-'8] eV (ultralight

axions, or ULAs) is somehow different

* They can drive the present expansion of the Universe, acting as a quintessence field

* They can drive inflation

* They have a peculiar effect on structure formation (“fuzzy dark matter”)

Hlozek et al.,
PRD 2015
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ADDITIONAL
SLIDES



Hubble scale of inflation H; (GeV)
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