The seven reasons why I should not receive a poster prize
E: QCD and New Physics

Physics beyond the Standard Model from hadronic physics, including precision experimental data and precision calculations.

Conveners: W. Detmold (MIT), M. Gersabeck (U. Manchester), F. J. Llanes-Estrada (UC Madrid), E. Mereghetti (LANL), J. Portoles (IFIC, Valencia)
But this work was submitted to section (B), “Light Quarks”

The lightest, scalar glueball (mass 1.7~GeV) hides among the f_0s.
#6: A state no one has isolated in decades

Who would keep searching?
#5: We should support younger scientists
At least we do remember the Brodsky-Farrar counting rules

\[\frac{d\sigma}{dt} \propto f(\theta) \times \frac{s^2}{s^{n_i+n_f+L}} \]

 Orbital angular momentum: crucial to suppress \(f_0 \) \(qq \) wfs as \(J^{PC}=0^{++} \) with \(P=(-1)^{L+1} \) requires \(L=1 \)

Number of pointlike particles in initial state (e.g. \(n_i=2 \) for \(e^-e^+ \))

Number of pointlike particles in final state: crucial to suppress tetraquark configurations (\(n_f=4+2 \)) against gg-glueball (\(n_f=2+2 \))
(no need for a supercomputer)

#4: Very simple physics
Rather we propose an exclusive measurement,

\[e^-e^+ \rightarrow \phi + f_0 \]

Easy to reconstruct: four charged tracks \(K^+K^-\pi^+\pi^- \)

Fixed angle interval (e.g. Belle central barrel) so that ALL SCALES LARGER THAN QCD's 1 GeV
Count with your fingers like the druids at Tara Hill

\[\sigma \left(f_0 = |gg\rangle + \ldots \right) \sim \frac{\text{constant}}{s^3} \]

\[\sigma \left(f_0 = |q\bar{q}\rangle_{L=1} + \ldots \right) \sim \frac{\text{constant}}{s^4} \]

\[\sigma \left(f_0 = |q\bar{q}q\bar{q}\rangle_{s-wave} + \ldots \right) \sim \frac{\text{constant}}{s^5} \]
Count with your fingers like the druids at Tara Hill

\[
\frac{\sigma(11\text{GeV})}{\sigma(9\text{GeV})} \rightarrow \frac{1}{3.4}
\]

\[
\begin{align*}
&\text{gg} \\
&q\bar{q}, \quad L = 1 & \sim \frac{1}{5} \\
&q\bar{q}q\bar{q}, \quad s - \text{wave} & \sim \frac{1}{7.5}
\end{align*}
\]
WE FOUND IT! WE FOUND THE GLUEBALL!
#3: I should not be giving a plenary talk at two consecutive Confinement meetings
But since I am,
ππ lineshape in J/ψ → γ ππ
And the normalization from $e^-e^+ \rightarrow \phi f_0 @ 3$ GeV

(about 0.05 nbarn)
The lineshape changes with E; the glueball drops the least
#2: Not the most original poster
The first horizontal poster!
If you did not see it, you must have been holding a budweiser elsewhere during the poster session.
#1: I forgot my bottle of wine
But so did you (with $O(5\%)$ uncertainty)
(Mixing: more than one resonance with significant gg content → all those fall slowly with s)

To the next edition please everybody remember