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Introduction

Scope of this talk:

• D1 protection downstream of the TDIS in case of injection
kicker failures: Effects of

◦ TCDD
◦ Vacuum modules and transition tubes
◦ Additional shielding (TCMD) for D1

on the energy deposition in the D1 coils

• Q5 protection downstream of the TCDQ in case of
asynchronous beam dumps: Additional shielding for the Q5
and effect on the energy deposition in the Q5 coils
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Additional passive protection for the D1

Scenario and Boundary Conditions

• Beam Parameters for Run 3:

STD BCMS

εnx,y 2.08µm·rad 1.37µm·rad

Ib 2.3×1011 ppb 2.0×1011 ppb

• p+ simulated with injection energy of 450 GeV

• Simulation of a STD beam impact on the TDIS with impact parameter
1 σ (→ worst case in terms of energy deposition in the D1 coils) due to
injection kicker failure

• Scoring of the energy deposition in the D1 coils as result of particle showers
emerging from the TDIS
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Additional passive protection for the D1

Injection failures: protecting the superconducting D1
TDI located between separation dipoles:

  

D1
TCDDTDI

→ Beams have a horiz. angle of ∼1.5 mrad

→ TCDD opening sym. around machine axis

→ Provides asym. protection of D1 coils
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Additional passive protection for the D1

Efficacy of the existing TCDD (grazing impact on TDI)

No TCDD: With TCDD: With TCDD+vacuum tubes:
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Figures: Transverse energy density profile at longitudinal maximum in D1 coils, for 288 bunches (2.3×1011 ppb) impacting on lower TDI jaw with an impact
parameter of 1σ. No mask (left), present TCDD (center), and present TCDD + vacuum modules/transition tubes between TCDD and D1 (right).

FLUKA model with TCDD only: FLUKA model with TCDD and vacuum layout:
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Additional passive protection for the D1

Efficacy of the existing TCDD (grazing impact on TDI)
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• Mask does not reduce much the load on D1 coils at inner side of the ring (@negative x)

→ due to asymmetry, quite large mask aperture, and large distance from D1 front face

• Significant shielding by vacuum modules and cold-warm transition tube

→ yields a factor ∼2–3 reduction compared to case with TCDD only
→ results depend on details of FLUKA geometry model of vacuum layout
→ should stay with a sufficient margin (factor 3) below damage limit

• Main issue: the damage limit of NbTi coils for ultra-fast losses is not known

→ HiRadMat test by TE/MPE
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Additional passive protection for the D1

Shielding inside D1 insulation vacuum

Complementing the existing TCDD with a shielding inside the D1 cryostat

◦ Offers the advantage of intercepting shower particles closer to the magnet
◦ Would not affect the present machine aperture
◦ Allows to reduce peak energy density in D1 coils by about a factor 2

  

Cold mass end cap

Cold bore

Proposed shielding

~15-17cm

~1cm

      Transverse cut:
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Additional passive protection for the D1

Energy density in the D1 mask (grazing impact on TDIS)

• Simulation of the energy deposition in the D1 mask located directly in front of the cold
mass end cap of the D1

• Scenario of a grazing (1σ) HL-STD beam impact on the new TDIS

beam 1

2.08 µm, 288 bunches, 2.3x 1011 ppb
1σ impact parameter on TDIS 

• The modeled mask is 14 cm long mask, 1.1 cm thick and in direct contact with the beam
pipe

• Thermo-mechanical issues to be addressed by STI/TCD → T. Polzin
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Additional passive protection for the D1

Efficacy of the D1 mask (grazing impact on TDIS)

2.08 µm, 288 bunches, 2.3x 1011 ppb
1σ impact parameter on TDIS 

• Shielding by the mask leads to a reduction of the peak energy density in the D1 coils by a
factor of ∼2-3

• Peak energy density of ∼ 12.5 J/cm3 in the D1 coils with a presumably good
safety-margin → effective protection of the D1 coils
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Additional passive protection for the Q5
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Additional passive protection for the Q5

Scenario and Boundary Conditions - ABD

• Beam Parameters for Run 3:

STD BCMS

εnx,y 2.08µm·rad 1.37µm·rad

Ib 2.3×1011 ppb 2.0×1011 ppb

• p+ simulated at top energy of 7 TeV

• Sweep of a STD beam over the TCDQ due to an asynchronous beam
dump

• Scoring of the energy deposition in the Q5 coils as result of particle showers
emerging from the TCDQ
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Additional passive protection for the Q5

IR6: Protection devices/dumps

  

TCDS
(absorber)

TCDQ
(absorber)

TCTs
IR1/5

(tert. coll.)

TCDQM
(mask)

TCSP
(sec. coll.)

TDE
(dump)

MSD
(septa)

Q4

Q5, DS

red = need to check material robustness
blue = need to check if sufficiently protected
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Additional passive protection for the Q5

Particle Distribution on the TCDQ

• “New” MKD erratics observed in 2015: particle density on TCDQ can be 2×
higher than assumed for LS1 upgrade studies

Particle distribution by M. Fraser

→ New studies carried out for a Type 2 erratic (worst case)

→ Simulations with TCDQ half gaps of 8.1σ (3.9 mm) and 6.2σ (3.0 mm) including
0.5σ misalignment

→ Investigation of the effects, i.e. energy densities in downstream equipment
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Additional passive protection for the Q5

Energy density in Q4/Q5: 3.9 mm vs. 3.0 mm half gap

  

TCDQ TCSP

TCQM
Q4 Q5

Energy density in Q4 coils
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• Predicted peak energy density in Q4 coils increases from ∼17 J/cm3 to ∼20 J/cm3

(+15 %) with a reduction of the TCDQ half gap from 3.9 mm to 3.0 mm

• Predicted peak energy density in Q5 coils increases from ∼30–35 J/cm3 to
∼40–45 J/cm3 (+30 %)
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Additional passive protection for the Q5

Proposed additional passive shielding for the Q5

  

TCDQ TCSP

TCDQM
Q4 Q5

• Modeling of a mask directly upstream
of the Q5-cryostat shielding its coils:

◦ Stainless Steel (SS316LN)

◦ Inner radius: 3.325 cm (no gap
between mask and beam pipe)

◦ Outer radius: 6.957 cm

Beam

Q5

Q5
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Additional passive protection for the Q5

Peak energy density in Q5 coils w/ and w/o mask

  

TCDQ TCSP

TCDQM
Q4 Q5

• Significant reduction of the peak
energy density in the Q5 coils by the
mask

• Peak energy density drops by a factor
of ∼6-7 from ∼40–45 J/cm3 to
∼7 J/cm3

• The value of ∼7 J/cm3 is well below
the present design goal

→ The proposed mask offers effective
protection of the Q5 coils

Energy density in Q5 coils
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Additional passive protection for the Q5

Peak energy Density in the Q5-mask

Longitudinal energy density profile

 10

 20

 30

 40

 50

 60

 70

 80

 204.8  204.85  204.9  204.95  205  205.05

Pe
a
k 

e
n
e
rg

y
 d

e
n
si

ty
 (

J/
cm

3
)

Distance from IP6 (m)

Beam

Q5

Q5

• Peak energy density in Q5-mask
reaches ∼65 J/cm3

• For comparison: Peak energy density in
Q5-mask is lower than in D1-mask
(∼90 J/cm3) in the worst case of an
injection kicker failure

M. Frankl (WP14 Meeting) June 27th , 2017 18 / 23



Backup
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Backup

Remarks on the energy density in superconducting coils

• Model calculations:

→ Should account for a sufficient margin (at least a factor 3 below damage limit)

• Main issue: the damage limit of NbTi coils for ultra-fast losses is not exactly
known

→ During the design of LHC protection devices a value of ∼87 J/cm3 was assumed,
which however has to be revised

→ HiRadMat test on SC cables carried out by colleagues from TE/MPE in Sep
2016 (at room temperature), another test planned at cryogenic temperatures
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Backup

LHC injection protection devices

Existing protection devices in IR2/8:

• intercept bunches in case of injection kicker
(MKI) failures
◦ misinjections (no kick of inj. beam)
◦ accidental kicks of the stored beam

• primary injection beam stopper (TDI) at
∆µ ≈90◦ from MKIs (vertical)

• auxiliary collimators (TCLIA/TCLIB) at
∆µ ≈n×180◦±20◦ from TDI (vertical)

• complemented by masks (TCDD/M, TCLIM)
intercepting secondary showers from absorbers

HL-LHC (→upgrades in LS2):

• Layout remains essentially the same

• New design of the TDI

• Additional passive protection for D1
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Backup

Present layout IR2: TDI+TCDD

  

IR2
injected beam (B1)

MBX front
face

~2.8m
TCDDTDI

TCDD in IR2:
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Backup

Present layout IR8: TDI+TCDD

  

IR8 injected beam (B2)

MBX front
face ~2.9m

TCDDM TDI

TCDDM in IR8:
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