

EDMS NO.	REV.	VALIDITY
_1822633	0.1	

THERMOSIPHON ON DETECTOR COMMISSIONING AT LOW PRESSURE

This document describes planning of the low-pressure test of the Thermosiphon with ATLAS detector.

TRACEABILITY		
Prepared by: M. Doubek	Date: 2017-06-20	
Verified by: M. Battistin, O. Crespo-Lopez	Date: 20YY-MM-DD	
Approved by:	Date: 20YY-MM-DD	
Distribution: Claudio Bortolin, Damien Romaric Febvre, Daniel Lefils, Didier Ferrere, Hidetoshi Otono, Igor Ilyashenko, Kerstin Lantzsch, Koichi Nagai, Lukasz Zwalinski, Michele Battistin, Olivier Crespo-Lopez, Pierre Bonneau, Piotr Dziurdzia, Stephane Berry		
This document is uncontrolled when printed. Check the EDMS to verify that this is the correct version before use.		

EDMS NO. 1822633	REV.	VALIDITY

Introduction:

The Thermosiphon is capable of achieving lower vapor pressure than the compressor cooling plant. The low vapor pressure allows to decrease the evaporation temperature in the detector.

Goals:

The goal will be to test the low pressure operation of the Thermosiphon and to evaluate the temperatures of the SCT detector at low evaporation pressures.

Main risks and concerns for the tests were:

The backpressure regulators of the PIXEL detector will maintain nominal (flat) evaporation pressures of the PIXEL therefore the PIXEL temperatures will not be affected. There is a risk of stopping the cooling in case of malfunction.

<u>Test plans</u>

The test will take one day. The Thermosiphon will be running on dummy load prior to the actual test with nominal vapor pressure set-point matching the compressor plant. The detector cooling will be than swapped from compressor plant to Thermosiphon and the vapor pressure will be slowly and steadily lowered.

EDMS NO. _ 1822633	REV.	VALIDITY

Initial vapor pressures

At the begging the Thermosiphon will match the nominal vapor pressures in the same manner as during the first commissioning.

Rack:	Q1	Q2	Q3	Q4
Compressor plant nominal values(SCT+PIXEL)				
Vapour pressure [bar _a]	1.44	1.43	1.44	1.44
This corresponds to Thermosinhon condenser temperature of -35°C				

אסטועז נס דוופווווטזואווטוו נטוועפווזפו נפווואפולנעו

Bear in mind that the back-pressure regulators are set higher:

- Minimal SCT BPR setting is ~1.64 bara
- Minimal Pixel BPR setting is ~1.71 bara

Vapor pressure in racks during the test

EDMS NO. _ 1822633	REV.	VALIDITY

Ramp-down

The ramp-down speed will be ~0.6 bar/hour, this corresponds to ~10 °C/hour <u>Final vapor pressure</u>

The ramp will be stopped when 1.0 bar_a is achieved in the distribution racks. This corresponds to vapor pressure decreased by 0.4 bar at the racks ($\Delta T=8^{\circ}C$). SCT BPR set-points

After the ramp-down the SCT backpressure set-points can be decreased as low as 1.0 bar. The evaporation temperature should decrease to -25°C as a result.

	Nominal	During test
BPR setpoint	1.7 bar _a	1.0 bar _a
Actual evaporation temperature	~-15°C	~-25°C

\bigcap	EDMS NO.	REV.	VALIDITY
	1822633	0.1	
2			

Summary

The test will take one day:

- 1) The settings of the PIXEL backpressure regulators will not be changed and the PIXEL temperatures will not be affected.
- 2) The cooling will be swapped to Thermosiphon at the morning
- 3) The SCT back-pressure regulator will be set to 1.0 bar and the evaporation pressure will be decreased.
- 4) The vapor pressure will be ramped-up back to nominal value
- 5) The cooling will be swapped back to compressor plant.