NNLO+PS MATCHING: ASSOCIATED HIGGS PRODUCTION

Wojciech Bizoń (University of Oxford)

in collaboration with: William Astill, Emanuele Re, Giulia Zanderighi

LHC HXSWG – WG1 meeting (29/06/2017)

LO: $\sigma^{(0)}$

NLO: $\sigma^{(0)} + \sigma^{(1)} \alpha_s$

NNLO: $\sigma^{(0)} + \sigma^{(1)} \alpha_s + \sigma^{(2)} \alpha_s^2$

- ➤ At next-to-next-to-leading-order QCD scale uncertainty becomes much smaller.
- ➤ VH is in the same class of processes as ggH and DY (colour-singlet production) but the phase-space is significantly larger.
- ➤ Often we would like to move from fixed-order prediction (limited number of partons) to the physical situation observed in detector (O(100-1000) particles): parton shower

POWHEG + MINLO

➤ POWHEG VH+j generator integrates the "B-tilde" function:

$$\tilde{B}_{\rm NLO} = \alpha_s(\mu_R) \left[B + \alpha_s(\mu_R) \left(V(\mu_R) + \int d\Phi_r R \right) \right]$$

➤ Multiscale Improved NLO (MiNLO): change renormalisation scale in calculation

Recipe:

- (a) Start with your old renormalisation scale (MVH).
- (b) Change scale for each QCD vertex (CKKW-like clustering)
- (c) attach Sudakov form factors for each coloured line

Resulting function to integrate:

- i) emissions with very low qT are damped
- ii) finite results in $q_T \to 0$ limit (unresolved jet)

 $\Delta_i(q_T, \mu) \equiv \exp\left\{-\int_{q_T^2}^{\mu^2} \frac{dk_t^2}{k_t^2} \left(\frac{\alpha_s(k_t)}{2\pi}\right) \left[A_i \log\left(\frac{\mu^2}{k_t^2}\right) + B_i\right]\right\}$

$$\tilde{B}_{\text{MiNLO}} = \alpha_s(q_T) \Delta^2(q_T, \bar{\mu}_R) \left[B \left(1 - 2\Delta^{(1)}(q_T, \bar{\mu}_R) \right) + \alpha_s(\bar{\mu}_R) \left(V(\bar{\mu}_R) + \int d\Phi_r R \right) \right]$$
with:
$$\bar{\mu}_R = \left(q_{T,1} \cdot \dots \cdot q_{T,N} \right)^{(1/N)}$$

- ► finite result when first jet unresolved $(q_T \rightarrow 0)$
- ➤ NLO accuracy retained after integrating out real radiation (no merging scale!)

NNLO REWEIGHTING (1)

➤ NLO (VH+j) computation:

$$\sigma_{\text{PWHG}}(VH+j) = \tilde{\sigma}^{(1)}\alpha_s + \tilde{\sigma}^{(2)}\alpha_s^2$$

NNLO REWEIGHTING (1)

► NLO (VH+j) computation:

$$\sigma_{\text{PWHG}}(VH+j) = \tilde{\sigma}^{(1)}\alpha_s + \tilde{\sigma}^{(2)}\alpha_s^2$$

after integrating out real radiation (MiNLO):

$$\sigma_{\text{PWHG}}(VH) = \sigma^{(0)} + \sigma^{(1)}\alpha_s + \tilde{\sigma}^{(2)}\alpha_s^2$$

NNLO REWEIGHTING (1)

➤ NLO (VH+j) computation:

$$\sigma_{\text{PWHG}}(VH+j) = \tilde{\sigma}^{(1)}\alpha_s + \tilde{\sigma}^{(2)}\alpha_s^2$$

➤ after integrating out real radiation (MiNLO):

$$\sigma_{\text{PWHG}}(VH) = \sigma^{(0)} + \sigma^{(1)}\alpha_s + \tilde{\sigma}^{(2)}\alpha_s^2$$

for full NNLO we need:

$$\sigma_{\rm NNLO}(VH) = \sigma^{(0)} + \sigma^{(1)}\alpha_s + \sigma^{(2)}\alpha_s^2$$

NNLO REWEIGHTING (2)

➤ NLO accurate predictions from set of events produced by VH+j MiNLO generator:

MiNLO-events:
$$\sum_i w_i \longrightarrow \sigma_{\texttt{MiNLO}} = \sigma^{(0)} + \sigma^{(1)} \alpha_s + \tilde{\sigma}^{(2)} \alpha_s^2$$

Rescale all weights by a factor which is differential in Born kinematics:

$$W(\Phi_B) = \frac{\left(\frac{d\sigma}{d\Phi_B}\right)_{\rm NNLO}}{\left(\frac{d\sigma}{d\Phi_B}\right)_{\rm MiNLO}} = \frac{d\sigma^{(0)} + d\sigma^{(1)}\alpha_s + d\sigma^{(2)}\alpha_s^{\ 2}}{d\sigma^{(0)} + d\sigma^{(1)}\alpha_s + d\tilde{\sigma}^{(2)}\alpha_s^{\ 2}} = 1 + \frac{d\sigma^{(2)} - d\tilde{\sigma}^{(2)}}{d\sigma^{(0)}}\alpha_s^{\ 2} + \mathcal{O}(\alpha_s^{\ 3})$$

> Such a rescaling gives NNLO accurate set of events (by construction):

NNLO-events:
$$\sum_i w_i imes W(\Phi_B) \longrightarrow \sigma_{\mathtt{NNLO}}$$

GROWING COMPLEXITY

Easy to imagine: with bigger phase-space (formally simple) procedure becomes computationally involving...

(a) Higgs production (ggH): 1-dim 1 variable (1D histogram = 25 bins)

(b) Drell-Yan production: 3-dim 3 variables (3D histogram = 15 625 bins)

(c) VH production: 6-dim 6 variables (6D histogram = ??? [244M bins])

ASSOCIATED HIGGS PRODUCTION

phase-space parametrisation:

1	2	3	4	5	6
y_{VH}	$p_{t,H}$	Δy	θ^*	ϕ^*	$m_{\ellar\ell'}$

cross-section in terms of Collins-Soper angles:

$$\frac{d\sigma}{d(\cos\theta^*)d\phi^*} = \frac{3\sigma}{16\pi} \left[(1+\cos^2\theta^*) + \frac{1}{2} (1-3\cos^2\theta^*) + \frac{1}{4}\sin 2\theta^* \cos \phi^* + \frac{1}{2}\sin^2\theta^* \cos 2\phi^* + \frac{1}{4}\sin \theta^* \cos \phi^* + \frac{1}{4}\cos \theta^* + \frac{1}{4}\cos \theta^* + \frac{1}{4}\sin \theta^* \sin \phi^* + \frac{1}{4}\sin \theta^* \cos \phi^* + \frac{1}{4}\sin$$

riangle neglect dependence on $m_{\ell \bar{\ell}'}$ (validated)

FINALLY:

- one 3D histogram for each A-coefficient (8+1 tables)
- still numerically challenging as each bin is an integral over 2-dim phase-space

ASSOCIATED HIGGS PRODUCTION

phase-space parametrisation:

1	2	3	4	5	6
y_{VH}	$p_{t,H}$	Δy	θ^*	ϕ^*	$m_{\ellar{\ell}'}$

cross-section in terms of Collins-Soper angles:

$$\frac{d\sigma}{d(\cos\theta^*)d\phi^*} = \frac{3\sigma}{16\pi} \left[(1+\cos^2\theta^*) + \frac{1}{2} (1-3\cos^2\theta^*) + \frac{1}{4}\sin 2\theta^* \cos \phi^* + \frac{1}{2}\sin^2\theta^* \cos 2\phi^* + \frac{1}{4}\sin \theta^* \cos \phi^* + \frac{1}{4}\cos \theta^* + \frac{1}{4}\cos \theta^* + \frac{1}{4}\sin \theta^* \sin \theta^* + \frac{1}{4}\sin \theta^* \cos \theta^* + \frac{1}{4}\sin$$

• neglect dependence on $m_{\ell \bar{\ell}'}$ (validated)

RESULTS:

NNLO vs. NNLOPS (HW)

Cross-section binned in 6 categories: according to transverse momentum of Higgs boson and presence of jets (YR4 recommendation):

(1)
$$0 < p_{t,H} < 150 \text{ GeV}$$

- (2) $150 \text{ GeV} < p_{t,H} < 250 \text{ GeV}$
- (3) $250 \text{ GeV} < p_{t,H}$

- during parton shower evolution some of QCD radiation ends up outside the the cone (jets are softened, jet-vetoed cross-section larger)
- pt-jet cut was set to 20GeV which is close to the point where NNLO diverges
- ➤ further corrections due to hadronisation

Jet definition:

 \rightarrow anti- k_t algorithm

$$\rightarrow R = 0.4$$

 $\rightarrow p_{t,j} > 20 \text{ GeV}$

REWEIGHTING UNCERTAINTY (HZ)

- ► large phase-space ==> computationally heavy task
- ➤ HW@NNLOPS: "smooth" enough distributions required very long runs (~1month x 300cores)
- Is it essential to have that long runs?
 - results below (HZ) were prepared with NNLO runs (~2 days x 2000cores) and 12.5M HZJ events
 - we have used various setups:
 - (a) reweight only with three basic variables (neglect Collins-Soper angles: A(i) = 0)
 - (b) neglect A(i) coefficients with large uncertainties (stat.err > 200%, stat.err > 50%)
 - => use less precise histograms for reweighting but assign an error associated with this procedure

INCORPORATING HBB DECAY AT NLO

- ➤ Hbb largest SM Branching Ratio (~60%)
- ➤ Allows for "precision" measurements in nonprimary H-production channels

REWEIGHTING: TREATMENT OF THE DECAY

➤ in narrow width approximation phase-space split into production/decay:

$$d\Phi_{Vb\bar{b}} = d\Phi_{VH} \times d\Phi_{(H\to b\bar{b})}$$

- ➤ NNLO reweighting performed using Born kinematics hence we can use the same setup as without Higgs decay (we are actually changing setup but purely for practical purposes).
- ➤ This approach secures NNLO accuracy in production stage.
- ➤ NNLO-LHE: Hbb decay is treated at NLO within POWHEG (i.e. virtual corrections + some events contain real emission from bb-pair) which enables probing decay observables at NLO.

USING THE CODE

- VH Reweighting requires two sources of input
 - (1) HWJ / HZJ @POWHEG+MiNLO
 - (2) HW/HZ @NNLO
- our code contains:
 - patches (analysis, identical physical parameters, ...) to produce compatible results
 - hv_minnlo: program for reweighting event files using multidimensional histograms
- ➤ for HW(NNLOPS) we have used HVNNLO code: [1107.1164; G.Ferrera, M.Grazzini, F.Tramontano], [1407.4747; G.Ferrera, M.Grazzini, F.Tramontano]
- ➤ for HZ(NNLOPS) we are using MCFM-8.0 for NNLO distributions: [1601.00658; J.Campbell, R.K.Ellis, C.Williams]
- ➤ we are planning to release the full code with detailed manual shortly after HZ publication
- ➤ for the time being, we are able to provide multidimensional HW distributions used in first paper [1603.01620], disadvantage: fixed settings

Should other NNLO codes become available in the meantime, we can help interested users to interface it with our NNLO-reweighter!

USING THE CODE

- VH Reweighting requires two sources of input
 - (1) HWJ / HZJ @POWHEG+MiNLO
 - (2) HW/HZ @NNLO
- our code contains:
 - patches (analysis, identical physical parameters, ...) to produce compatible results
 - hv_minnlo: program for reweighting event files using multidimensional histograms
- ➤ for HW(NNLOPS) we have used HVNNLO code: [1107.1164; G.Ferrera, M.Grazzini, F.Tramontano], [1407.4747; G.Ferrera, M.Grazzini, F.Tramontano]
- ➤ for HZ(NNLOPS) we are using MCFM-8.0 for NNLO distributions: [1601.00658; J.Campbell, R.K.Ellis, C.Williams]
- ➤ we are planning to release the full code with detailed manual shortly after HZ publication
- ➤ for the time being, we are able to provide multidimensional HW distributions used in first paper [1603.01620], disadvantage: fixed settings

Should other NNLO codes become available in the meantime, we can help interested users to interface it with our NNLO-reweighter!

