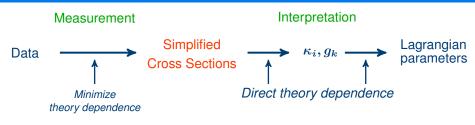
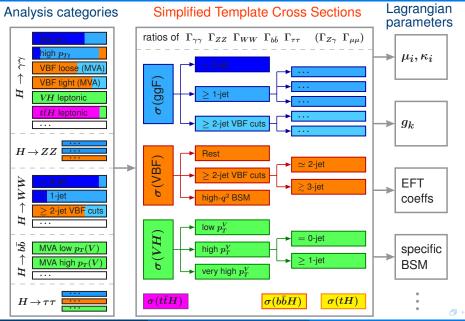
Simplified Template Cross Sections for VH

Frank Tackmann


Deutsches Elektronen-Synchrotron

WG1 VH subgroup meeting June 29, 2017

Reporting on recent discussions at Les Houches and in fid/STXS subgroup


Separating Measurement from Interpretation.

Goals

- Minimize dependence on theory systematics in measurements
 - Clearer and systematically improvable treatment at interpretation level (acceptance corrections, extrapolations to total xsec, ...)
- Minimize model dependence in measurements
 - Decouples measurements from discussions about specific models (SM, linear/nonlinear EFT, BSM models, ...)
- Measurements stay long-term useful
- Allows easy (re)interpretation with different theory inputs/assumptions
 - Improved theory predictions/uncertainties
 - μ_i, κ_i , anomalous couplings, EFT coefficients, specific BSM scenarios

Simplified Template Cross Section Framework.

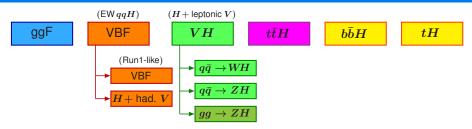
Frank Tackmann (DESY)

Simplified Template Cross Sections for VH

2017-06-29 2 / 1

Defining Features.

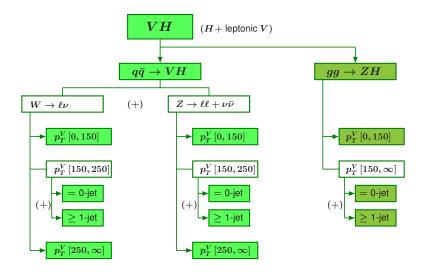
- Measure cross sections but separated into production modes
 - Allows different efficiencies/acceptances for different production modes without incurring dependence on SM production mode mix
 - SM processes act as kinematic templates
 - Future: Can add more kinematic templates (e.g. CP-odd Higgs)
- Non-Higgs backgrounds are subtracted
 - Future: Can add templates for BSM sensitive backgrounds (e.g. $pp \rightarrow WW$)
- Inclusive over the Higgs decays
 - Can perform a global combination of channels
- "Simplified" bin definitions abstracted from the actual measurement categories
 - Allow some acceptance corrections,
 - Analyses can use optimized selections at reconstruction level, MVAs ...
 - Avoid extrapolations that are unnecessary or nontrivial (i.e. theory sensitive)
- ⇒ Maximize sensitivity while reducing theory dependence


Staging.

Define different "stages" for each production mode

- Each analysis implements the binning according to the appropriate stage
- Evolution of different production modes can take place independently
- Bin definitions can evolve with statistics
 - Individual analyses can quote sum of bins while sensitivity is still limited
 - In BSM "overflow" bins even limits are very interesting
 - Can split into more fine-grained bins as required and allowed by statistics (previous determinations remain useful)
- Stage 0: closest correspondence to Run1
- Stage 1
 - All "minimally hoped-for" splits
 - Intermediate steps to get there indicated by "(+)" for possible bin merging
 - Early measurements will show if adjustments are needed (will not make any changes unless serious problems arise)
- Stage 2: to be defined (after gaining more real-life experience)

< 67 >


Stage 0.

Template processes are defined for a stable Higgs but decayed V

- "VH" is defined as $pp
 ightarrow V(
 ightarrow {
 m leptons})H$, split into
 - $q\bar{q}
 ightarrow W(
 ightarrow \ell
 u)H$
 - $q\bar{q} \to Z(\to \ell \bar{\ell}, \nu \bar{\nu})H$
 - $gg o Z(o \ell \bar{\ell}, \nu \bar{
 u})H$
- $q\bar{q} \rightarrow V(\rightarrow qq)H$ is part of "VBF" (EW qqH production)
 - ▶ Targeted via dedicated "VBF" bin with $V(\rightarrow jj)H$ topology cuts
- gg
 ightarrow Z(
 ightarrow qar q)H is part of "ggF"
 - Effectively considered a (real-emission) EW correction to ggF
 - Currently no experimental sensitivity, swamped by ggF+2jets
 - ▶ In the future could split out of ggF bin with $V(\rightarrow jj)H$ topology cuts

< 67 ►

• Binning in p_T^V aligned with $H \to b\bar{b}$ (which is main contributor)

2017-06-29 6 / 11

< 🗗 >

Theory Uncertainties.

Two aspects to theory uncertainties

- Residual theoretical uncertainties related to "unfolding" experimental event categories to STXS bins
- Uncertainties in interpretation of STXS bins, i.e. in SM (or beyond) cross section predictions for each bin
 - Also enter as "residual" uncertainties in measurement whenever bins with different sensitivities are merged

Implementation of uncertainties (in measurement or interpretation)

- Requires uncertainties per bin and their correlations
 - Particularly important when binning cut itself introduces a source of uncertainty that affects each bin but cancels in their sum
 - Experimental implementation in terms of ±100% correlated or uncorrelated nuisance parameters
- → Need to identify and distinguish different sources of uncertainties and evaluate also their correlations between kinematic bins
 - Use generic parametrization of uncertainties in kinematic bins as discussed in YR4 Section 1.4.2a

Frank Tackmann (DESY)

Simplified Template Cross Sections for VH

Uncertainties With Multiple Bin Boundaries.

- Each bin can have multiple boundaries, and each boundary can be shared by different bins
- Consider given bin boundary when all additional subdivisions are removed and parametrize in terms of independent yield and migration uncertainties
- Consider binning cut "a/b" with $\sigma_{ab} = \sigma_a + \sigma_b$ and associated $\Delta_{a/b}$ (anticorrelated between σ_a and σ_b)
 - Allow for additional subbins such that $\sigma_a = \sum_i \sigma_a^i$ and $\sigma_b = \sum_j \sigma_b^j$
 - Consider binning uncertainty as fully correlated among subbins and implement with a single nuisance parameter

$$heta_{a/b}: \quad \Delta_{a/b} imes \left\{ \{x^i_a\}, -\{x^j_b\}
ight\} \qquad ext{with} \qquad \sum_i x^i_a = \sum_j x^j_b = 1$$

where x_a^i and x_b^j specify how $\Delta_{a/b}$ gets distributed among the subbins

• Consider each binning cut/bin boundary as potential uncertainty source

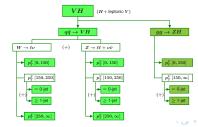
- Migration uncertainty between σ_a and σ_b , and yield uncertainty inside each
- Limiting case: Global yield uncertainty for total xsec

Frank Tackmann (DESY)

Simplified Template Cross Sections for VH

2017-06-29 8 / 11

< 🗗 >


Parametrization of VH Uncertainties: Sources.

QCD uncertainties

- $\Delta_{\mu}, \Delta_{150}, \Delta_{250}$
 - Option 1: overall yield uncertainty plus two p_T^V binning (shape) uncertainties
 - Option 2: one uncorrelated uncertainty for each p_T^V bin
- $\Delta_{0/1}$: jet bin migration uncertainty
- Same nuisance parameter for W and Z (i.e. 100% correlated)

EW uncertainties

- Δ_{Sud} : EW Sudakov effects (correlated between W and Z)
- $\Delta_W, \Delta_Z, \Delta_\gamma$
 - Separate uncertainties for non-Sudakov contributions
- Separate sources (uncorrelated uncertainties) for $q\bar{q} \rightarrow VH$ and $gg \rightarrow ZH$
 - Study which sources for gg → ZH should be correlated with gg → H
- Some of this also impact "VBF" bins through its hadronic VH contribution

Parametrization of VH Uncertainties.

	QCD uncertainties (Option 1)				EW uncertainties			
Bin	Δ_{μ}	Δ_{150}	Δ_{250}	$\left \Delta_{0/1} ight $	$\Delta_{ m Sud}$	Δ_W	Δ_Z	Δ_{γ}
W [0,150]	x_1	-c	0		y_1	*		*
W [150,250]	x_2	+c	+d		y_2	*		*
=0j [150,250]	x_2z	+cz	+dz	+1		*		*
≥1j [150,250]	$x_2(1-z)$	$+c(1\!-\!z)$	$+d(1\!-\!z)$	-1	•••	*		*
W [250, ∞]	x_3	0	-d		y_3	*		*
Z [0,150]	x_1	-c	0		y_1		*	
Z [150,250]	x_2	+c	+d		y_2		*	
=0j [150,250]	x_2z	+cz	+dz	+1	•••		*	
≥1j [150,250]	$x_2(1-z)$	$+c(1\!-\!z)$	$+d(1\!-\!z)$	-1	•••		*	
Z [250, ∞]	x_3	0	-d		y_3		*	

+ Analogous uncorrelated sources for gg
ightarrow ZH

< (7)

Summary.

We need a consistent/common/coherent treatment of theory uncertainties across kinematic regions and across production modes

- Same approach also followed for ggF bins (already agreed upon) and for VBF bins (to be discussed)
- This is a first "not-so-minimal" proposal, which we think should work
- We appreciate your feedback, in particular
 - Any objections? Anything missing?
 - Is this sufficiently general for the EW corrections?
- We (STXS) would like to agree with you (VH) on one parametrization
 - One goal is for us to be able to easily switch between different predictions
 - We will then at some point ask you for the numbers to fill the table
- We have a STXS subgroup meeting on July 6, 2pm (Indico link) where we will further discuss this (for both VH and VBF)
 - Please join if you're interested

< 47 >

Backup Slides

< 🗗 >

Fiducial vs. Simplified Template Cross Sections.

Fiducial: Optimized for maximal theory independence

- Minimize acceptance corrections
- Simple (rectangular) signal cuts
- "Exact" fiducial volume
- Fiducial in Higgs decay
- Targeted object definitions

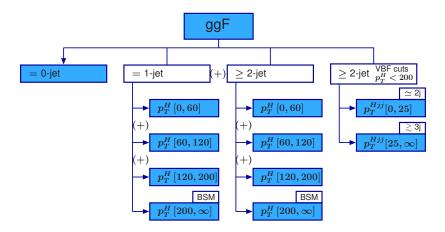
Agnostic to production modes

(Single-)differential distributions (overlapping events)

Only $H \rightarrow \gamma \gamma, ZZ, (WW)$ (by default no combination of channels)

Simplified: Maximize sensitivity while reducing theory dependence

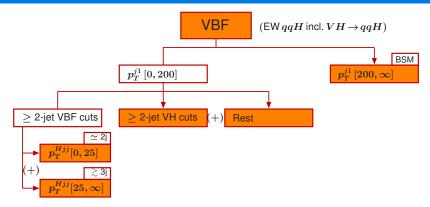
- Allow larger acceptance corrections
- Allow event categories, MVAs, ...
- Abstracted/simplified fiducial volumes
- Inclusive in Higgs decay
- Common idealized object definitions


Xsec split by production mode

Xsec split into mutually exclusive regions of phase space

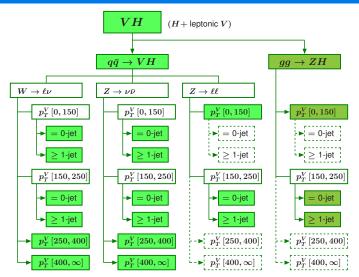
Explicitly designed for combination of all decay channels

< 67 >


Gluon Fusion – Stage 1.

- Jet bins motivated by experimental analyses
- High p_T^H bins target boosted categories (au au) and BSM overflow
- VBF-like cuts to constrain ggF contribution in VBF categories

< (7)


VBF – Stage 1.

- VBF defined as electroweak qq'H production
 - including usual VBF process and VH with hadronic V decays
- First split by p_T^{j1}
 - ▶ VBF topology cuts: $m_{jj} > 400 \, {
 m GeV}$ and $\Delta \eta_{jj} > 2.8$ (no other cuts)
 - ▶ V(
 ightarrow jj)H topology cuts: $60 \, {
 m GeV} < m_{jj} < 120 \, {
 m GeV}$
 - Rest: Everything not passing above (including events with < 2 jets)

< 67 >

VH – Stage 2.

Possible options for stage 2

• Separate Z decays, further split high p_T^V

Frank Tackmann (DESY)

2017-06-29 15 / 11

< 67 ►