# Topic 1 The formation (and structure) of r-process nuclei

### L.M. Fraile

Grupo de Física Nuclear Dpto. Estructura de la Materia (?) Universidad Complutense, E-28040 Madrid, Spain



- ✓ What can / should be meaured
  - $\rightarrow$  Observables
- ✓ What astrophysical observations are needed to crosscheck and verify the measurements
- $\checkmark$  What is the impact
  - → How do the nuclear-induced uncertainties compare to other sources of uncertainty
- ✓ What can be done at EURISOL-DF
  - $\rightarrow$  How does it compare to Fragmentation facilities
- ✓ What may be reached at EURISOL





Weak r process (A <

- v-driven w**h20** from protoneutron star in core-collapse supernovae
- Also in neutron star mergers N.V. Tanvir et al., Astrophys. J. Lett. 848, L27 (2017)

## Main r process (A >

- Merger of the deutron stars confirmed by GW170817, GRB 170817A&AT2017gfo; see e.g. Astrophys. J. Lett. 848, L12 (2017)
- neutron star black hole mergers?
- Other sites, such as magnetars?

# A. Kankainen



Classic r-process assuming (n,γ)-(γ,n) equilibrium:

- Isotopic abundances (waiting points) set by S<sub>n</sub> (masses)
- Elemental abundances set by beta-decay half-lives
- > Smoothening →  $\beta$ -delayed neutron decays

- masses
- Beta-decay T<sub>1/2</sub>
- P<sub>n</sub> values

- (n,γ) rates
   excited states
- Fission

# Masses: r-process abundances





# The second r-process peak and the <sup>132</sup>Sn region and rare-earth peak



Impact on the r process: Cd masses 0.017 -AME12  $10^{-1}$ -- New Solar 0.013 10-2 Mass fraction 0.009 10-3 0.004  $10^{-4}$ 120 140 122 124 126 128 130 132 134 136 80 100 160 180 A A

*D. Atanasov et al., PRL 115, 232501* (2015)



- Forms during the freezeout phase when matter decays back to the stability
- Midshell, different origin of the peak
- Deformation maximum and/or deformed shell gap may drive abundances to create the rare earth peak and/or fission recycling?

### NEED MASSES TO EXPLORE THIS!

# Beta-decay: $P_n \& P_{2n}$ et al.





J. Agramunt et al., EPJ Web of Conferences 146, 01004 (2017)

PKM= Pfeiffer et al., Prog. Nucl. Energy 41, 39 (2002) RAS = Rudstam et al., Atom. Data Nucl. Data Tables 53, 1(1993)



Half-lives: long-living isomeric states? Identification of the states?

- First-forbidden beta decays relevant for the r process
- GT strengths for EC rates (inverse of beta decay) for core collapse and neutron star crust processes

FRDM+QRPA approach T. Marketin et al., PRC 93, 025805 (2016)



### **O. Sorlin - Determination of neutron capture rates** What for ? : r process freeze-out, neutron bursts, cooling of neutron stars

Far from stability, around closed shells

 $E_n \approx kT \approx 100 \text{ keV for } T \approx 10^9 \text{K}$ 

S<sub>n</sub>(A+1) is small Few states contribute, mainly low L Resonant or / and Direct capture

Other methods needed for nuclei in between shell closures -> level density and γ-strengths





Transfer (d,p) reactions can provide  $S_n$ , E, L, SF required for n captures Comparison of  $(n, \gamma)$  versus (d,p)-derived cross section (Kraussmann et al. PRC 53 (1996)) Choose the appropriate energy for momentum matching (v/c~0.1), RIB of ~10<sup>5</sup>pps

## Neutron capture rate at N=28 (<sup>46</sup>Ar)



(d,p) access to E\*, SF, spins  $\rightarrow$  derive (n, $\gamma$ ) stellar rates Direct capture (E1) with  $\boldsymbol{\ell}_{p} = \boldsymbol{0}$  on  $\boldsymbol{p}$  states dominates Speed up neutron-captures at the N=28 closed shell Favor the enhancement of <sup>48</sup>Ca over that of <sup>46</sup>Ca using  $d_n = 3 \ 10^{19} - 21 \ cm^{-3}$ 

O. Sorlin et al. CR Phys 4 (2003) L. Gaudefroy et al., EPJA (2006)

## Neutron capture rate at N=82

Shuffle the material to more neutron-rich when the star expands Could modify the shape of the r process peak Play a role in weak r process conditions



### Neutron captures at the N=82 shell closure



Same cross sections at <sup>132</sup>Sn, by chance!

Differ by more than factor 100 at <sup>130</sup>Sn

-> important role of DC on p orbits

Rauscher et al. PRC 57(1998)



Jones et al. Nature 465 (2010)

### Go to heavier Sn or Cd in the future

## M. Eichler - The (solar) r-process abundance pattern



# Uncertainties for r-process calculations

### **Nuclear properties**

- Masses
- neutron capture cross sections
- β-decay rates
- fission rates & fragment distribution

### **Hydrodinamical conditions**

 $Y_e = \frac{n_p}{n_p + n_n}$ 

temperatures and densities expansion timescales

### What is the relative weight of uncertainties?

## Where does the r-process path run in $(n, \gamma)$ - $(\gamma, n)$ equilibrium?

detailed balance:  

$$\begin{split} \lambda_{\gamma,n}(Z,A+1) &= \frac{2G(Z,A)}{G(Z,A+1)} \left(\frac{A}{A+1}\right)^{3/2} \left(\frac{m_u kT}{2\pi\hbar^2}\right)^{3/2} \langle \sigma \mathbf{v} \rangle_{n,\gamma}(Z,A) \exp[-S_n(Z,A+1)/kT] \\ \frac{Y(Z,A+1)}{Y(Z,A)} &= \frac{\langle \sigma \mathbf{v} \rangle_{n,\gamma}(Z,A)}{\lambda_{\gamma,n}(Z,A+1)} n_n = \frac{G(Z,A+1)}{2G(Z,A)} \left(\frac{A+1}{A}\right)^{3/2} \left(\frac{2\pi\hbar^2}{m_u kT}\right)^{3/2} n_n \exp[S_n(Z,A+1)/kT] \end{split}$$

along any given isotopic chain, the isotope (Z, A) with maximum abundance can be estimated via

$$\frac{Y(Z,A+1)}{Y(Z,A)} = 1$$

$$S_n(Z,A+1) = -kT \ln \left[ \frac{G(Z,A+1)}{2G(Z,A)} \left( \frac{A+1}{A} \right)^{3/2} \left( \frac{2\pi\hbar^2}{m_u kT} \right)^{3/2} n_n \right]$$

e.g., Thielemann, ME, et al. (2017)



https://www.nndc.bnl.gov/nudat2/

### Equilibrium conditions

$$n_n = \frac{2G(Z,A)}{G(Z,A+1)} \left(\frac{A}{A+1}\right)^{3/2} \left(\frac{m_u kT}{2\pi\hbar^2}\right)^{3/2} \exp\left[-S_n(Z,A+1)/kT\right]$$



### <sup>137</sup>In: $(n,\gamma)$ - $(\gamma,n)$ only

Neutron star merger

#### MHD SN (Jet)



### <sup>137</sup>In: $(n,\gamma)$ - $(\gamma,n)$ and $\beta$ -decay

Neutron star merger

#### MHD SN (Jet)





 $\checkmark$  r-process evolves in several stages where different effects are important

→ with nuclear heating always reaches (n,γ)-(γ,n) equilibrium
 ✓ r-process isotopes found if equilibrium holds
 ✓ late-stage n captures (freeze-out) possible (i-process...?)
 ✓ Regular observations of kilonovae will provide detailed information on nuclear composition of the ejecta

 $\rightarrow$  what can we learn from experimental measurements?

✓ Single-process isotopes  $\rightarrow$  Eu, Ba



- ✓ Relevant properties of nuclear far from stability → masses, T1/2, Pn
  - → neutron-capture rates on unstable nuclei
    - case dependent, techniques?
- $\checkmark$  Understand processes in stars that can produce abundances
- ✓ EURISOL-DF (facilities)
  - $\rightarrow$  pure, high quality beams for mass measurements and beta decay studies
    - complementarity...
  - $\rightarrow$  isomers and their role in the r process
  - $\rightarrow$  go further out to neutron-rich nuclei







L.M. Fraile – GFN-UCM

Physics cases EURISOL November 2017



# **EURISOL-DF**



L.M. Fraile – GFN-UCM

Physics cases EURISOL November 2017



**EURISOL-DF** 



## But don't forget the fuel!!



L.M. Fraile – GFN-UCM

Physics cases EURISOL November 2017

Grupe de Esica Nuclear





- ✓ What can / should be meaured
  - $\rightarrow$  Observables
- ✓ What astrophysical observations are needed to crosscheck and verify the measurements
- $\checkmark$  What is the impact
  - → How do the nuclear-induced uncertainties compare to other sources of uncertainty
- ✓ What can be done at EURISOL-DF
  - $\rightarrow$  How does it compare to Fragmentation facilities
- ✓ What may be reached at EURISOL