

Goal of High Luminosity LHC (HL-LHC) as fixed in November 2010

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing:

An integrated luminosity of **250 fb**⁻¹ **per year**, enabling the goal of L_{int} = **3000 fb**⁻¹ twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Ultimate performance established 2015-2016: with same hardware and same beam parameters: use of engineering margins:

L_{peak ult} ≅ 7.5 10³⁴ cm⁻²s⁻¹ and Ultimate Integrated L_{int ult} ~ 4000 fb⁻¹

LHC should not be the limit, would Physics require more...

The largest HEP accelerator construction project

Dispersion Suppressor (DS) in P7

Matching Section (MS)

Interaction Region (ITR)

Modifications

- 1. In IP2: new DS collim. in C.Cryost.
- 2. In IP7 new DS collimation with 11

Cryogenics, Protection, Interface, Vacuum, Diagnostics, Inj/Extr, Controls, new UG and surface infrastr.

A PARTIE OF THE PARTIE OF THE

Change/new lay-out

- 1. TAXN
- 2. D2
- 3. CC
- 4. Correctors
- . Q5
- 6. Q5@1.9K in P6
- 7. New collimators

Complete change and new lay-out

- 1. TAXS
- 2. **Q1-**Q2a-Q2b-**Q3**
- 3. D1
- 4. All correctors
- 5. Heavy shielding (W)

> 1.2 km of LHC !!

HiLumi LHC Main Milestones

2010: establishment of the Design Study

- 2011: approved DS funding by EU
- 2013: Priority 1 in EU strategy update for PP
- 2013: kick-off meeting of HL-LHC as construction project (50% of the budget)
- 2015: First C&SR; end of HiLumi DS
- 2016: approval of full budget in June Council
- 2016: re-baselining to include full C.E. cost [120MCHF]

Re-baselining May-Aug 2016

- Crab Cavity: 2 cavities/beam-side ⇒ 16 CCs + 4 spares (vs. 32+8 previously)
 Revision of the CC power needs and volume of the power system
- Use of present Q4 MQY quadrupole- with 70 mm aperture (avoiding new MQYY of 90 mm aperture as new Q4). MQY modified for 1.9 K operation.
- QPS for the MQXF with a minimal configuration with redundancy.
- Reduction of number of 11 T dipoles for DS collimation (2 complete cryo-assembly instead of 4).
- Plus other measures (collimations, powering...)

Review Mandate

- Currently 'only' considered as an option for the HL-LHC project
- First proposed for LHC in 2006 within CARE HHH [Vladimir Shiltsev]
- Followed up by LHC Collimation team in 2009 in the context of machine protection with Crab Cavities
- Initial LHC operation experience showed sharp loss spikes
 - → additional motivation for e-lens as halo cleaner
- Operation experience in RunII no longer featured loss spikes → need for electron-lens?
- Review on the e-lens need for HL-LHC in 2016 @ CERN [chaired by RS]
 - → strong recommendation to include e-lens for HL-LHC
 - [\approx 35MJ stored beam energy in HL-LHC beam halo > 3 σ]
- Study on technical design and preparation for integration into the HL-LHC baseline
- Would like to integrate e-lens as baseline by C&S review March 2018
 - → This review: technical readiness for including e-lens in HL baseline

Electron Lens for HL-LHC

Review Charge:

Review if CERN has all information at hand to estimate the individual cost items for the hollow e-lens and to prepare a tentative production schedule (including potentially required prototype developments and R&D milestones) for implementing the e-lenses during LS3 and to assure sufficient space and infrastructure in the designated areas for the installation of the hollow e-lenses during LS3.

Detailed Questions:

- Is CERN ready for estimating the total cost and resource requirements for the e-lenses (including the technical development)?
- Is CERN ready to specify the technical infrastructure needs in IR4 to avoid future iterations on key services at a later stage (e.g. cryogenic)?
- Is CERN ready for reserving sufficient space for the e-lenses in IR4 [we had explicitly removed this from the charge of the last review on the needs for a hollow e-lens]?
- Have all the implied technical groups identified the required resources for implementing the e-lens development (including the required technical development for finalizing the technical design by the end of LS2) and integration (for the e-lenses installation in LS3 and operational exploitation as of the start of Run4)? This point clearly should match the identified resource requirements of point 1) and should include a comparison with the currently existing resources.
- Is CERN ready for identifying which components of the e-lenses need to be produced in-house and which components could be outsourced?

Electron Lens for HL-LHC

Review Members:

- Wolfram Fischer [chair], BNL
- Paul Cruikshank, CERN-TE-VAC
- Francesco Bertinelli, CERN
- Rüdiger Schmidt, TU Darmstadt / CERN
- Laurent Tavian, CERN and HL-LHC Project Office
- Akira Yamamoto, CERN / KEK

Special thanks to:

- Diego Perini, CERN EN-MME-DI
- Stefano Redaelli, CERN BE-ABP-HSS
- Adriana Rossi, CERN BE-BI-EA
- Celine Le Bon

