

Operational aspects of a hollow electron lens at HL-LHC

R. Bruce

based on material from, and discussions with:

J. Coello de Portugal, M. Fitterer, M. Giovannozzi,

G. Mazzacano, S. Redaelli, B. Salvant, R. Tomas,

J. Wagner, D. Wollmann, C. Zanoni

Hollow electron lens review 19/10/2017

Introduction

- Apart from a cleaned halo, what will be the impact on HL-LHC operation if the hollow electron lens is installed?
- Outline of this talk:
 - Aperture
 - Effect of solenoids
 - Impedance
 - Effect on proton beam core from electron beam
 - Operation without tails
 - Hollow electron lens failures

Aperture

- Round beam pipe of 80 mm radius foreseen in electron lens
 - No reduction with respect to present beam pipe
- No issue in terms of available aperture for the circulating beam
- Maybe even an aperture reduction is possible.
 To be studied

Effect from solenoids

Current leads Main solenoid and bends could have non-negligible effect on proton beam Cryogenic jumper Bending s. Support structure + positioning tables

Magnetic fields acting on beam

- Longitudinally
 - main solenoid has 4T field over 3 m
 - The bends have field up to 2T
- Transversally
 - Up to 0.5 T vertical field
 - Negligible horizontal field
- Other beam
 - Small field leaking to the other beam.
 - Magnetic shielding can be added around pipe

Data from C. Zanoni

Studies on solenoid coupling: Injection

- Effect of linear coupling from solenoidal fields studied, pessimistically assuming 6T field
 - Full details: <u>HSS section meeting</u> 11/10/2017
- Much smaller than measured coupling in the LHC

Injection energy Measurement on the LHC (for scale)

J. Coello de Portugal, R. Tomas et al.

Studies on solenoid coupling: 7 TeV

J. Coello de Portugal, R. Tomas et al.

Conclusion on solenoid coupling: negligible

Transverse dipole component

- S-shape of e-lens conceived so that the effect on the proton beam core from the two electron beam crossings cancels out
- With this shape, kicks from bending solenoids add up
- Effect on orbit and mitigations under study
 - Local correction?
 - Fallback solution: Ramping of solenoids with beam energy => smaller kick at injection
- In case of quench, missing dipole kick could cause losses => needs interlocking
- Effect of fringe fields still to be studied (both for transverse and solenoidal fields)

Impedance calculations

- Impedance calculations on pipe performed using CST Particle Studio
 - Full details: talk G. Mazzacano in <u>HL-LHC WP2 meeting</u> 13/10/2017

G. Mazzacano, B.Salvant

Example results: impedance vs frequency

G. Mazzacano, B.Salvant R. Bruce, 2017.10.19

Comparison to total LHC impedance

G. Mazzacano, B.Salvant

Longitudinal imaginary
Dipolar horizontal imaginary
Dipolar vertical imaginary

Electron Lens	Total LHC Impedance		
$\frac{Z(f)}{n(f)} = 0.021 \text{ m}\Omega$	$\frac{Z(f)}{n(f)} = 90 \text{ m}\Omega$		
$Z_{trans} = 600 \Omega/m * \frac{\beta_x}{70}$	$Z_{trans} = 2 M\Omega/m$		
$Z_{trans} = 700 \Omega/m * \frac{\beta_y}{70}$	$Z_{trans} = 2 \text{ M}\Omega/m$		

β at e-lens (J. Wagner)

Configuration	Beam	$\begin{array}{c} \mathbf{Energy} \\ [\mathrm{GeV}] \end{array}$	β^* [m]	$\begin{bmatrix} \beta_x \\ [\mathrm{m}] \end{bmatrix}$	β_y [m]
Injection and end of ramp	1 2	450 – 7000 450 – 7000	6 6	231.30 281.49	213.31 262.49
Collision round 50cm	$\begin{array}{c c} 1 \\ 2 \end{array}$	7000 7000	$0.50 \\ 0.50$	231.60 281.37	212.54 263.23
Collision round 15cm	$\begin{array}{ c c }\hline 1 \\ 2 \end{array}$	7000 7000	0.15 0.15	198.20 283.46	213.08 264.21

Conclusion on impedance

- The studied design of the electron lens shows good performance. Impedance is small (permil level) compared to total LHC impedance budget
- Some recent design changes have not yet been studied for impedance
 - Work ongoing
 - No issue expected

Effect on proton core from electron beam bends

- For ideal radially symmetric hollow electron lens with an S-shaped geometry, effect on core cancels
- Imperfections on the bends or electron beam profile => non-zero kick at the center of the beam
 - Negligible in continuous mode, but could be important if the hollow electron lens is pulsed
- Effect studied in simulations and experiments in 2016 (<u>CERN-ACC-NOTE-2017-0037</u>) and in 2017 (analysis ongoing) – M. Fitterer et al.
 - Transverse damper (ADT) simulates kick from e-beam

Results: effect on proton beam core

- For some pulsing patterns of the hollow electron lens, emittance growth and losses are observed, while other pulsing patterns show no effect on proton beam core
- Choice of pulsing pattern during operation important
- Studies ongoing

Cross-talk electrons and protons

- Previous proton beam core considerations for single bunches
- To be studied: Can one proton bunch perturb the e-beam in a way that it affects the next proton bunch?

Operation without tails

- In case of a fast beam movement, losses from tails would trigger beam dump before losses from core
- If tails are depleted by hollow e-lens, risk to hit directly core and have faster rise of losses
- Mitigation: leave some witness bunches with untouched halo
 - E-lens response time sufficient for acting train by train
 - Might need to review BLM thresholds
- ALICE plans proton operation around 3 months per year during HL-LHC
 - Relies presently on colliding halo in the two beams through separation levelling
 - To be checked: compatibility of ALICE operation with depleted tails

What if the hollow electron lens doesn't work?

- Failure modes should be studied in detail and proper interlocks put in place
 - Example: quench of solenoid
- If halo cleaning is strictly needed, e.g. for crab cavity failures, we cannot operate without it
 - Good halo monitor needed, which can be interlocked
- If halo cleaning is needed to mitigate loss spikes: risk more beam dumps in the absence of e-lens
- If halo cleaning turns out not to be strictly needed, interlocks should be designed so that LHC can operate without it
 - Impedance and aperture OK => The hollow electron lens is transparent for the machine if turned off.

Conclusions

- Studied impact on HL-LHC operation from the hollow electron lens
- Solenoids: coupling negligible. Effect on orbit and fringe fields to be studied, but no showstopper expected
- Impedance: Well within spec. Latest design still to be studied, but no showstopper expected
- Aperture: no reduction of beam stay clear
- Effect on core from electron beam: pulsing mode has to be optimized for machine configuration
- Operation without tails: Need to leave witness bunches from machine protection
- The hollow electron lens is transparent for the machine if turned off. Detailed interlock strategy to be defined – no showstopper expected.

Conclusions

 In conclusion, hollow e-lens seems to be a benign device for operation, although some points remain to be studied

Thanks for your attention

