

Injector and collector design details and developments

G. Gobbi, A. Kolehmainen, D. Perini, C. Zanoni

G. Anderson, F. Meneghetti, J. Puska, E. Jussila

International Review on the e-lens concept readiness for integration into the HL-LHC baseline

19/10/2017

With the collaboration of: G. Stancari (FNAL), A. Rossi, S. Redaelli

Outline

- Introduction
- E-gun
 - Functioning cathode
 - E-gun design development
 - FE Thermal analysis
- Collector
 - Design
 - FE Thermo-mechanical analysis
- Conclusions

Introduction

Aim: to present the state of art of the current design

Outline

- Introduction
- E-gun
 - Functioning cathode
 - Design development
 - FE Thermal analysis
- Collector
 - Design
 - FE Thermo-mechanical analysis
- Conclusions

E-gun – Cathode

- Electron beam generated by hollow cathode
- Thermionic cathode: electron emission T activated

E-gun – Cathode parameters

HEL nominal parameter		
Magnetic field of the main solenoid $\mathbf{B}_{\mathbf{MS}}$	4 T	
Magnetic field in the e-gun B _{GS}	0.2 T	
Inner diameter of hollow electron beam	0.9 mm (3σ)	
Outer diameter of hollow electron beam	1.8 mm (6σ)	
Anode voltage V	10 kV	
Current at cathode I	5 A	

minimize field compression factor

$$\frac{R_{\text{beam,cathode}}}{R_{beam,MS}} = \sqrt{\frac{B_{MS}}{B_{GS}}}$$

A small cathode allows decreasing the field in main solenoid

Small cathode means **high current density**→ material play a key role

BJUT (Beijing University of Technology)

Scandia-doped W cathode

$$D_e$$
= 16.10 mm D_i = 8.05 mm J = 3.3 A/cm²

E-gun – FNAL e-gun design

First e-gun produced at CERN (EN-MME workshop)

E-gun design: FNAL → few modifications added (different standards)

Dispenser cathode HeatWave Labs (US)

 $D_e = 25 \text{ mm } D_i = 12.5 \text{ mm}$

 $P = 6.14 \mu perv \rightarrow 5.5 A @ 10kV$

E-gun – HEL cathode dimension in FNAL design

Second e-gun: to adjust the design to fit in the HEL nominal dimension cathode by maintaining the same perveance (5 A - 10 kV)

E-gun design: FNAL

Dispenser cathode BJUT (Beijing University of Technology)

E- gun – HEL nominal dimensions CERN design

Third e-gun: compact design with minimum number of components possible

- E-gun design: CERN
- Dispenser cathode BJUT (Beijing University of Technology)
- $D_e = 16.10 \text{ mm}$ $D_i = 8.05 \text{ mm}$

E-gun – FE thermal analysis

- Aim: FE thermal analysis to verify the thermal behavior of the materials inside the e-gun at high temperature
- Benchmark: outside temperature profile e-gun tested at FNAL

Model to be extended to the new CERN e-gun design

Photo Electron Gun from "Characterization of the CERN Hollow Electron Gun at the Fermilab electron-lens test stand" by Giulio Stancari

E-gun- FE thermal analysis

- Development of reliable thermal model to evaluate the behavior of different materials
- Sensitivity study of the model
- Outside temperature profile → benchmark

INPUT	1000 °C on tungsten cathode (~73 W)
PARAMETERS	Convection coefficientsMaterials EmissivityContact Thermal Resistances
OUTPUT	Temperatures measured on the outside cylinder

E-gun- FE thermal results

- Results within 5-10% with respect to experimental data
- Control electrode in Molybdenum

E-gun – Gun solenoid field

- Magnetic field around e-gun generated by
 3 solenoids
- low sensitivity to cathode misalignment
- increase electron beam stability

Currents optimized for flat axis field at cathode location

C. Zanoni COMSOL simulation

Outline

- Introduction
- E-gun
 - Functioning cathode
 - Design evolution
 - Thermal analysis
- Collector
 - Design
 - Thermo-mechanical simulations
- Conclusions

Collector – Functioning

- Collector: used to collect electron cloud and dissipate its energy
- Material: Cu alloy (e.g. ETP)
- Dimensions: 340xØ350 mm
- Power to absorb: 50 kW maximum value (conservative)
 - → Magnetic shield
 - →Electrical insulation
- Active cooling via circulating water

Restrictions:

- Cu max temperature < 90°C for UHV compatibility
- Flow speed ≤ 1.5 m/s
- Size limitations

Collector – Load conditions

- All the power (50 kW) is dissipated in the collector → magnetic shield to open magnetic field
- A 7 mm mumetal shield to deposit power deposited uniformly on a 150 mm long cylinder

19/10/2017 G. Gobbi

16

C. Zanoni COMSOL simulation

Collector – FE thermal analysis

Load condition:

Power 50 kW on 150 mm long collector portion

Boundary condition:

Flow rate: 1.1 l/s

Flow speed: 1.5 m/s

Inlet temperature: 22°C

Outlet temperature: 34°C

Maximum temperature: 76 °C

Cu T limit < 90°C

Collector – FE structural analysis

Load condition:

- Thermal gradient
- Vacuum
- Water pressure

Boundary condition:

Flow rate: 1.1 l/s

Flow speed: 1.5 m/s

Inlet temperature: 22°C

Outlet temperature: 34°C

Maximum stress 73 MPa

Conclusions

- Know-how to built e-gun transferred from FNAL to CERN → a first CERN e-gun successfully tested at FNAL
- An optimization of the e-gun design with HEL parameters proposed by CERN and to be tested in FNAL Test Stand
- The current design of the collector is thermally and structurally verified
- Further developments:
 - CERN design e-gun thermal analysis
 → to validate design and materials
 - From full particle dynamics simulation outcome (A. Rossi)
 - →Optimization of the cathode shape and dimensions
 - →Update collector simulations with new load and position

Thank you for your attention

Perveance

Child-Langmuir law:

$$I = PV^{3/2}$$

$$I = JA$$
 $P = const \cdot \frac{A}{d^2}$

A cathode aread cathode-anode distance

Estimation of Nusselt Number

$$Nu_x = \frac{Total\ Heat\ Transfer}{Conductive\ Heat\ Transfer} = \frac{h_x x}{k}$$

- Value changes with flow temperature
- 1. ΔT is estimated
- T_avg used to find fluid properties and Prandtl number
- 3. Using an estimation of flow speed, Reynolds number is calculated
- 4. Nusselt number is calculated using an appropriate correlation. In this case flow is turbulent so:

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$

Ansys Detailed Iterative Estimation

- Model split into five sections
- Each section considered separately:

