

List of ongoing studies and topics for a potential test facility and expected benefits for the reference design

Adriana Rossi, Sergey Sadovich

Context

- HEL e-beam has different regime (highly space-charged limited) from existing e-lenses
- Simulations: UltraSAM (Track) CST (WARP)
 - Not yet a direct comparison between different codes, but indications points towards a need for a higher accelerating voltage and magnetic field
 - Need of increasing statistics
- Experimentally we have performed measurements at FNAL test facility
 - Limitations: no bend, ratio beam pipe/beam very far from perveance limit, no compression
 - RHIC e-lens or CERN tests stands
- Need to be confidence in the choice of parameters

Outline of this talk

- Past and present test stand
- Summary of current measurements at FNAL
- CERN test stand
- RHIC e-lens for tests without ion/proton beam?
- Conclusions

E-lenses test stands: overview

FERMILAB – Tevatron

https://cdcvs.fnal.gov/redmine/projects/elens/wiki/Test_Stand

Operational, up to 10 kV, 80s x 1Hz pulses (or higher at lower current) Used to test CERN guns, will be used for testing guns for space-charge compensation at IOTA ring. Could be used to test HF modulators.

BNL - RHIC

25-mm (1-in) Fermilab prototype for LHC (HG1)

HG1: original design

HG1b: added cathode shield

HG1c: replaced cathode

2011-present

[arb. units]

In = 8.75 A B = 4.0 kG V = 3.556 kV Io = 1360 mA

We can see beam deformation already at <0.5A

Main differences with HEL

Ratio between the pipe and beam size is ~3

→ pipe perveance ~ 10A

- Uniform pipe Ø
- No bends (we cannot see effect of drifts due to B x gradB)

Test facility at CERN (1)

- Foreseen for ARIES studies WP16 –
 Intense, RF modulated E-beams (IRME)
 - Design and build a test stand for testing this gun including instrumentation suitable for measuring the transverse and longitudinal profiles of the RF modulated electron beam
 - Measure the properties of the RF modulated electron beam created by the gun using this test stand

Test facility at CERN (2)

- Foreseen to test high intensity e-gun for Beam-Beam Long Range compensation
 - Few mm round e-beam, up to 20A, 20-35kV
 - Modulated at 40MHz for bunch by bunch
 - Could be modulated at 4MHz (102nd HiLumi WP2 Meeting https://indico.cern.ch/event/662031/)
- If HEL becomes baseline tests at CERN
 - beam instrumentation, modulators, interlocks,
 - understanding safety and technical aspects of e-lenses operation
 - preparation infrastructure for test and commissioning of components of HEL@LHC

Test-stand development at CERN:

Basic configuration – stage 1

Gun solenoid (twins), collector solenoid, diagnostic box (pin-hole Faraday cup + YAG screen monitor), HV system.

magnets at CERN

Purpose of this stage:

- Preparation:
 - Commissioning diagnostic procedures (current, profile, position)
 - Commissioning HV system
 - Safety and technical aspects of operation
- Electron gun tests: characterization & simulations
- Design diagnostic box
- Tests with Beam Gas Curtain monitor

Test-stand development at CERN. Upgrade

Addition of main solenoid – stage 2

Main solenoid could be 0.4-0.5Tx1m or higher (in the latter case a dry SC solenoid may be cheaper and would expand range of investigation)

Purpose of this stage:

- Allow drift and see beam deformations/rotations/...
- Test Beam Position Monitor 'shoe-box' with very HF modulation
- Test effect of very HF modulation (%current) on beam dynamics (microbunching?)
- Study electron beam dynamics in regime close to virtual cathode
- Computer model validation
- Study electron beam dynamics with compression

Test-stand add on with upgrade

Test-stand development at CERN. The future!

Addition a bend – stage 3

Purpose of this stage:

- Measure effect of B x gradB on deformation of beam with high current density
- Computer model validation

RHIC

- RHIC will be used to test effect of hollow ebeam: hollow electron gun in construction
- RHIC e-lens has all features to be the ideal test stand for hollow electron beam

RHIC e-lens TEST STAND!

ELECTRON LENSES FOR HEAD-ON BEAM-BEAM ...

PHYS. REV. ACCEL. BEAMS 20, 023501 (2017)

FIG. 3. Schematic layout of the RHIC electron lens.

Conclusions: a test stand at CERN

- Studying/characterisation e-lenses's modules:
 - É-gun (5A DC 20A DC), Modulator of electron beam

 - Beam diagnostics: profile, position, ...
 - Prototype of collector
 - * Compatibility with elliptical beams
- Investigate electron dynamics
- Testing computer models and studying beam dynamics
 - UltraSAM, Trak, CST, WARP
 - LHC e-lenses simulation
- Understanding safety and technical aspects of e-lenses operation
 - Software control (correctors, etc.)
 - Interlocks
- Preparation infrastructure for test and commissioning of components of HEL@LHC

Thank you

With special thanks to Giulio Stancari, Alexander Pikin,

Alexey Valichev and BINP team

