
Date

tcp_test_20170619

Outline: further investigations based on the feedback

✤ mini_daq bug fixes: spike & memcpy bugs

✤ iperf+UDP for data loss/data collision study

✤ Use jumbo frame for TCP;

✤ TCP congestion control algorithm

2

mini_daq bug fixes

✤ Online analyzer modification:

✤ Use nano second time stamp to “cure” the spikes

✤ Use recorder_thrd.c to fill TCP speed histogram to
avoid local ethernet throughput

✤ Handling dynamic data_length

3

iperf+UDP for data loss/data collision study

4

iperf server setup

iperf client setup

Band width parameter seems to be most
important:
1, by setting “-b 10000m”, the data loss
is ~10% no matter four pair connections
or single connection
2, by setting “-b 1000m”, the data loss is
~3% no matter four pair connections or
single connection
conclusion: the current iperf version
doesn’t support 10gbps??
(iperf version 2.0.5)

5

client1
10.0.0.3

client 2
10.0.0.4

client 3
10.0.0.5

client 4
10.0.0.6

Test configuration

server
10.0.0.14

server
10.0.0.13

server
10.0.0.15

server
10.0.0.16

Cisco switch

Use the following configuration for test

Select Jumbo fram (9000Bytes/frame)

✤ From E50 server0 and server1, select Jumbo frame with
[root@e50_server0 oper]# ifconfig ens6f3 mtu 9000

✤ Confirm the change with [root@e50_server0 oper]# ifconfig ens6f3

✤ Also configure Cisco UCS 6120 for Jumbo frame

6

TCP congestion algorithm

✤ Check available module: ls /lib/modules/`uname -r`/kernel/net/ipv4/

✤ Load module: /sbin/modprobe tcp_htcp

✤ To check the default congestion algorithm: sysctl
net.ipv4.tcp_congestion_control

✤ results obtained so far are based on default “cubic” algorithm

✤ To check the control algorithm allowed: sysctl
net.ipv4.tcp_allowed_congestion_control

✤ To set the control algorithm: sysctl -w
net.ipv4.tcp_congestion_control=reno

7

Results

8

1 pair;
HDD only

1 pair;
online onlyNo serious overhead found;

use online histogram to
evaluate TCP speed

packet = 30kB, 10k buffer,
Jumbo frame, congestion
control = “highspeed”

[Mbps]

[Mbps]

Results

9

1 pair;
online only

4 pairs;
online only

packet = 300kB, 10k buffer,
Jumbo frame, congestion
control = “highspeed”

performance converged;
use two Gauss for P.D.F?

[Mbps]

[Mbps]

Results

10

1 pair;
online only

4 pairs;
online only

packet = 300kB, 10k buffer,
Jumbo frame, congestion
control = “cubic”

performance converged;
use two Gauss for P.D.F?

[Mbps]

[Mbps]

Summary & todo

✤ Updated TCP speed histograms provide more reliable information

✤ Jumbo frame slightly improves the performance

✤ Congestion algorithm seems not very effective

✤ Packet size is most critical for a good performance: accumulate
~300kB before sending to TCP buffer

✤ Use two Gauss distribution to represent TCP P.D.F?

✤ one for Linux timestamp resolution; another for TCP speed
fluctuation??

11

✤ Bigger buffer? kernel TCP tuning?

✤ P.D.F. vs. date rate transmission?

12

