Sweet spot in θ ? Continuum?

June 21, 2017

Dear gentlemen,
actually, I am not pessimistic. Among the solutions we know (SPACAL, HF, DREAM, RD52/Pb and RD52/Cu) is there a sweet spot that optimizes hadron and EM resolutions? These cases are on a continuum:

module	absorber	η_{S}	η_{C}	$\chi=\left(1-\eta_{S}\right) /\left(1-\eta_{C}\right)$	$\tan \theta$	θ
SPACAL	Pb	1.0	0.0	0.0	∞	$\pi / 2=1.57$
RD52	Pb			0.3	3.3	1.28
DREAM	Cu	0.71	0.20		0.36	2.78
RD52	Cu				1.23	
HF	Fe	0.0	0.2		0.8	0.88

Are there other parameters to performance?
In Sehwook's Fig. 14(b), the rotation angle could be slightly larger than 30degs. to make the distribution more vertical and therefore narrower when projected
onto the S -axis. Sehwook properly did not gild the lily, which would have made the distribution look better.
θ labels a calorimeter. Is there an optimum θ ? It is possible to imagine fibers of different diameters and/or groove spacings to make whatever values of η_{S} and η_{C} one likes. On 4th, I once contemplated a third fiber type to optimize measuring the neutrons, but there are few good choices here, and the conclusion was that timehistory was best.

When I was at TTU for a semester, Igor helped me use C++ to analyze the BGO+DREAM hadron data ($\pi^{+}, 200 \mathrm{GeV}$). The dual-readout in the BGO was weak, so I added the S signals and the C signals from BGO and DREAM (not justified). And, I rotated the C-S plot (around an arbitrary point of my choosing, not justified) to make the distribution vertical. I did a root-fit ($S=S_{0}+a \times C+b \times C^{2}$) to the distribution to check that it was vertical, and there was a quadratic term of about 4% in C. Sehwook's plot might also have a quadratic term in it, but it is hard to see in this pot. The projected plot could be narrowed if this quadratic term were taken out using C.

Principles of dual-readout calorimetry (1)

Figure 1: C / E vs. S / E plot showing the positions of $\eta_{S}=(h / e)_{S}$ and $\eta_{C}=(h / e)_{C}$. The red line with slope $\tan \theta$ is a straight line independent of particle energy and particle type. Particles and jets with differing EM fractions simply populate the red line differently but, being on this red line, they all have the same dual-readout energy. From this figure, $\tan \theta=\left(1-\eta_{C}\right) /\left(1-\eta_{S}\right)$.

