A new model for volunteer computing

David P. Anderson
Space Sciences Lab
University of California, Berkeley

Sept. 2017
The original BOINC model

- Scientists
 - lots of them (100s or 1000s) will create BOINC projects
 - They’ll compete for volunteers by doing PR and making great web sites describing their research
The original model

- Volunteers
 - periodically survey the project web sites
 - rank projects based on
 - the importance of the science area to them
 - the credentials of the scientists
 - dynamically choose projects based on rankings
The original model

- Dynamic ecosystem of competing projects
- Project get computing power in proportion to their (apparent) merit
 - otherwise infeasible research gets done
 - high-risk research gets done
- The public learns about science
- A big fraction of global computing power does science
The original model

We’ve had considerable success, but:

- The set of projects has been small and static, and includes little mainstream U.S. science
- The set of volunteers
 - small, narrow, declining
 - project lock-in
 - motivated largely by credit
Why so few projects?

- High risk/reward
- Creating a BOINC project requires resources that few research groups have
- Few scientists know about volunteer computing
Why few/static volunteers?

- Evaluating projects is hard
- BOINC looks too complex in general
- Marketing volunteer computing is hard
 - too many brands
Other issues

- The HPC world views VC as a gimmick, and ignores it
- The computer science world ignores VC
- It’s hard (for me at least) to get funding
A new model

Goals

- Serve more scientists
- Get more volunteers
- Move VC toward the mainstream of computational science, HPC, computer science
 - get more smart people studying VC, developing BOINC, integrating BOINC
A new model

- **Scientists**
 - add VC to existing HPC facilities like supercomputer centers and portals

- **Volunteers**
 - create an interface to VC based on science goals rather than projects
 - create a unified brand (not ‘BOINC’)
Adding VC to HPC

- **Texas Advanced Computing Center (TACC)**
 - ~20% of jobs can run on VC
 - “launcher”: cmdline tool for running job batches

- **nanoHUB**
 - portal for nanoscience
 - web interface to ~30 standard apps
 - uncertainty quantification: lots of jobs
 - currently use small cluster and AWS
Adding VC to HPC

- BOINC “universal app”: vboxwrapper + Docker-player VM image
 - Docker image and input files are in workunit
- TACC and nanoHUB already package apps as Docker images
- We can support 1000s of apps and scientists with no incremental work!
Adding VC to HPC

- Remote job submission
 - each job in a batch can have its own templates
- Remote file management
- Identity mapping
Attributes of a job

- What area of research does it contribute to?
- Where (geographically and institutionally) are the researchers?

For projects like TACC, these attributes are per-job, not per app or project
What can we use these attributes for

- show project attributes in list
- show user info about jobs they’re running
- let users filter work from a given project
- do accounting of computing power per science area
- let users express preferences at the top level
Keyword architecture

- Keywords have:
 - short and long names (dynamic)
 - integer ID and symbol (static)
 - hierarchy level and parent ID (dynamic)
 - category
 - science area
 - location
Keywords

- There must be a single, authoritative keyword list
- boinc/doc/keywords.inc
- community-based selection of keywords and hierarchy
Keywords for job/project selection

- Each user can express a yes/maybe/no preference per keyword (e.g. in TBD or elsewhere)
- Each project has a list of (keyword, work fraction) and an optional list of keywords per job
- Don’t attach user to project with a “no” keyword with work fraction 1.
- Don’t send jobs with “no”keywords
TBD

- A volunteer interface based on keywords rather than projects.
- A resource allocation mechanism
- A brand for marketing volunteer computing
TBD Architecture

TBD
- Web site
- DB
- AM RPC
- Projects
TBD: accounting

- TBD maintains daily history for
 - total
 - project
 - user

- Tracked quantities
 - REC (CPU, GPU)
 - runtime (CPU, GPU)
 - jobs (success, fail)
TBD: Allocation

- Linear allocation model
 - supports both continuous and bursty demands
 - possibly supports QoS guarantees
TBD: Allocation

Goals

- Respect user preferences
- Respect project allocations
- Maximize total throughput
- Minimize projects per host
TBD: Project allocation

- Might involve
 - National Science Foundation (XSEDE)
 - EU commission
 - others as appropriate

- Possible criteria
 - # scientists served
 - merit of research
is a unified brand
 – for marketing
 – for co-promotion
 – endorsed by trusted government agencies

lets grant proposals include no-risk VC component

supports sporadic or 1-time computing needs
Names

- Not ‘BOINC’
- Sigma / Scigma \(\Sigma \)
- Sciphon
- Sciborg
- SCION
- Onboard
One-click install

New user scenario:

- Fill out account form (email, science prefs)
- Click “Join”
 - redirects to boinc.berkeley.edu/concierge.php
 - downloads appropriate client installer
 - encodes AM/account info in installer filename
 - BOINC client finds this
 - welcome dialog, no login dialog
- This mechanism can be used by projects too!
TBD Status

- Funded by NSF (UCB/Purdue/TACC) through 6/20
- Most of the technology has been developed
 - Github: davidpanderson/scienceunited
- UCB server/URL (scion.berkeley.edu)