
Enabling BOINC as a nanoHUB
Computational Platform

Steven Clark
nanoHUB.org
HUBzero.org

Research Computing, Purdue University

PLATFORM FOR COLLABORATIVE SCIENTIFIC
COMPUTATION

● User perspective
○ Production level code
○ Powerful computing resources
○ No downloading, no compiling, ...
○ Automatically runs most updated version
○ Access regardless of location

● Developers perspective
○ GUI development environment - RAPPTURE
○ Source code management - subversion
○ Rich development platform

SUBMITTING JOBS TO LOCAL RESOURCES

SUBMIT RUN

● This command will request sixteen cores for ten minutes to run namd2-2.9 where it is installed
● Submit deduces that the file prog.namd needs to be transferred for the job to run
● Additional files that need to be transferred are specified by additional command line arguments
● Upon job completion all files created or modified by the job will be returned to the user

$ submit --nCpus 16 --wallTime 10 \
 --inputfile par_all27_prot_lipid.inp \
 --inputfile ubq_ws.pdb \
 --inputfile ubq_ws.psf \
 namd2-2.9 prog.namd

$ mpirun -n 16 namd2-2.9 prog.namd

● Execution on local host

● Execution on foreign host

SUBMITTING JOBS TO FOREIGN RESOURCES

SUBMIT CONFIGURATION - OVERVIEW
● Sites - core set of parameters for remote resources
● Aggregators - mechanism for grouping multiple sites for the purpose of setting limits on job

submission and prioritizing users

● Tools - specific set of parameters for individual tools
● Managers - commands to run before and after application execution
● Identities - configuration parameters for managing shared community credentials
● Monitors - parameters for configuring job tracking monitors located on remote resources
● Appaccess - parameters used to manage who can execute which applications on remote

resources
● Environmentwhitelist - permissible user setable environment variables
● Tunnels - used to facilitate ssh tunnelling to remote resources

SUBMIT CONFIGURATION - SITES

● Core set of parameters for remote resources

[normal@stampede]
venues = stampede.tacc.xsede.org
venuePort = 2222
maximumCores = 288
remotePpn = 16
remoteBatchAccount = TG-ASC140014
remoteBatchSystem = SLURM
remoteBatchPartition = normal
venueMechanism = gsissh
identityManagers = XSEDE
remoteBinDirectory = ${HOME}/Submit/bin
remoteScratchDirectory = /scratch/03280/diagrid3/diagridJobs
siteMonitorDesignator = stampede
executableClassificationsAllowed = staged, home
checkProbeResult = False
logUserRemotely = True

SUBMIT CONFIGURATION - TOOLS

● Specific set of parameters for individual tools

[namd2-2.9]
destinations = normal@stampede
executablePath = /home1/03280/diagrid3/HUBapps/share64/namd/namd-2.9/bin/namd2
remoteManager = namd-2.9

SUBMITTING JOBS TO FOREIGN RESOURCES

SUBMIT/BOINC - INTEGRATION
● nanoHUB Application

○ UI
○ User supplied data
○ Application files

● Submit Server
○ Common interface between local and remote resources

● BOINC Server
○ Job execution manager for all BOINC submissions

● Volunteer Host
○ Where the work happens

BOINC - APPROACH
● Volunteer Host

○ VirtualBox - nanoHUB applications run in Linux environment. VirtualBox provides access
to Windows and MAC volunteer hosts.

○ boinc2docker - introduction of docker containers allows simpler change management.
One docker container can support many nanoHUB applications.

○ Mounted volumes - allow for reduced memory requirement when loading docker
container

○ nanoHUB application files sent as tar balls and are not removed at job completion to
reduce bandwidth requirement

○ User supplied data is also sent as a tarball but is job specific and is removed at job
completion

BOINC - APPROACH
● BOINC Server

○ stage_docker_image - combines docker save and stage_file to place tarballs in the
download directory. Also creates nanoHUB specific vbox_* and boinc_app_* files.

BOINC - APPROACH
● Submit Server

○ submit_api - submit one or more jobs in a batch
○ Set of standard submit scripts for each batch system

■ receiveinput
● createBatch
● uploadFile
● uploadFiles

■ submitbatchjob
● submitBatchJob
● submitBatchJobs

■ transmitresults
● fetchBatchOutput

■ cleanupjob
● retireBatch.py

■ killbatchjob
● abortBatch.py

BOINC - APPROACH
● nanoHUB Application

○ Nothing new is required

SUBMIT CONFIGURATION - NEW ADDITIONS
● Sites - core set of parameters for remote resources
● Aggregators - mechanism for grouping multiple sites for the purpose of setting limits on job

submission and prioritizing users

● Tools - specific set of parameters for individual tools
● Managers - commands to run before and after application execution
● Identities - configuration parameters for managing shared community credentials
● Monitors - parameters for configuring job tracking monitors located on remote resources
● Appaccess - parameters used to manage who can execute which applications on remote

resources
● Environmentwhitelist - permissible user setable environment variables
● Tunnels - used to facilitate ssh tunnelling to remote resources
●
● ToolFiles - list of job independent files required for each tool
● DockerImages - list of docker container tar ball files required to load a container.

SUBMIT CONFIGURATION - BOINC SITE

● Core set of parameters for remote resources

[boinc]
venues = submit.nanohub.org
remotePpn = 1
maximumCores = 1
remoteBatchSystem = BOINC
remoteUser = USER
venueMechanism = local
remoteBinDirectory = /var/gridman/submit/bin/Boinc
executableClassificationsAllowed = staged
remoteManager = serial
siteMonitorDesignator = devboinc
checkProbeResult = False
identityManagers = user

SUBMIT CONFIGURATION - BOINC TOOL

● Specific set of parameters for individual tools

[adept_r32]
destinations = boinc
executablePath = /apps/adept/r32/middleware/invoke
toolFiles = nanohub_apps_adept_r32
remoteManager = boinc

SUBMIT CONFIGURATION - TOOLFILES

● Specific set of files required for individual tools

[nanohub_apps_adept_r32]
dockerImage = nanohub_apps_base:10
vboxFile = vbox_job_d54a9b325a3b90c9a499f5f2a19be8307f7bbcbb5c7e0326fc31a74962cfdf98.xml
boincAppFile = boinc_app_d54a9b325a3b90c9a499f5f2a19be8307f7bbcbb5c7e0326fc31a74962cfdf98
fileInfoAttributes = sticky, no_delete
fileRefAttributes = copy_file
appsFiles = apps_rappture_grid_tag_1.7.2-6645-2077.tar.gz, apps_adept_r32.tar.gz

SUBMIT CONFIGURATION - DOCKERIMAGES

● Specific set of docker image files required for container

[nanohub_apps_base:10]
imageFile = image_d54a9b325a3b90c9a499f5f2a19be8307f7bbcbb5c7e0326fc31a74962cfdf98.tar.manual.gz
layerFiles = layer_196609da1addf1aaaee3eb2b3d05ca86d279bb2ba436db2401965a5cc549f5a5.tar.manual.gz,
layer_1f60dc5c3f6839b0837c2775884edee7ab71f2afbff12fc6eebea90a2667968e.tar.manual.gz,
layer_4fb4b7f4e967f3b0d356f283aac0dcfa63ff48a410f31cc57a2272ff6d4481d8.tar.manual.gz,
layer_d5b6f70446583527a114339c9e926fef77509c2da7b16e27ede7df98e8520027.tar.manual.gz,
layer_42a604a82d8b606f1c55095213473fa4ca727d5fb6bd55efc73601e5e8db0418.tar.manual.gz

TOOL EXECUTION - ADEPT

/usr/bin/invoke_app "$@" -C rappture -t adept

● invoke

● -C rappture - execute rappture with default arguments
○ Render UI using tool description file (tool.xml)
○ Except input from user
○ Execute simulation on demand

● -t adept - run tool named adept

SUBMIT EXECUTION - ADEPT
driver=driver_adept_32.xml

cat > toolparameters.adept_r32 << EOFPARAMS
file(execute):${driver}
EOFPARAMS

submit --venue boinc \
 --inputfile ${driver} \
 --inputfile toolparameters.adept_r32 \
 --env HUB_SESSION=${SESSION} \
 --env TOOL_PARAMETERS=toolparameters.adept_r32 \
 adept_r32 -w headless

● TOOL_PARAMETERS - do not render UI
● -w headless - do not use window manager

SUBMIT USE CASES
● On demand

○ UI used to declare inputs for simulation
○ Command line
○ Single simulation or parametric sweep

● Cache resolution
○ Input (driver.xml) files are placed in a cache queue
○ External process pulls input from cache queue, does the simulation, saves the result
○ If cache result exists no simulation is required simply pull the existing result
○ Faster response time provides better user experience

SUBMIT USE CASES
● Uncertainty quantification

○ Inputs declared as distributions
○ Statistical methods used to determine input samples
○ A simulation is run for each sample
○ Result is a response surface model which can be used to approximate simulation

● Exploratory simulation
○ Allow for interactive selection of multidimensional input space
○ Automatically generate simulation input samples covering the space
○ Execute simulation for each sample

QUESTIONS & ANSWERS

?

SUBMIT PARAMETRIC SWEEPS
● Parametric sweeps via single command

● One simulation is run for each combination of parameters

submit --parameters @@cap=10pf,100pf,1uf sim.exe @:indeck
submit --parameters @@vth=0:0.2:5 --parameters @@cap=10pf,100pf,1uf sim.exe @:indeck
submit --parameters params sim.exe @:indeck
submit --data input.csv --parameters "@@doping=1e15-1e17 in 30 log" sim.exe @:infile
submit --parameters @@num=1:1000 sim.exe input@@num
submit --parameters @@file=glob:indeck* sim.exe @@file

SUBMIT CONFIGURATION - AGGREGATORS

● Mechanism for grouping multiple sites for the purpose of setting limits on job submission and
prioritizing users

[normal@stampede]
destinations = normal@stampede
maximumActiveJobs = 1000

SUBMIT CONFIGURATION - MANAGERS

● Commands to run before and after application execution

[namd-2.9]
computationMode = mpi
preManagerCommands = . /opt/apps/lmod/lmod/init/sh, module load intel/15.0.2,
module load impi/5.0.2
managerCommand = ibrun -np @@{NPROCESSORS}
mpiRankVariable = PMI_ID

SUBMIT CONFIGURATION - IDENTITIES
● Parameters for managing shared community credentials

[user]
identityType = HUBuser

[commonSSH]
identityType = communitySSH
communityPrivateKeyPath = /opt/submit/etc/submit_rsa
userPrivateKeyFile = commonSSH_@@HUBUSERNAME
permanentUsers = gridman

[XSEDE]
identityType = x509
certificateDirectory = /var/gridman/Proxy/xsede-igtf
certFile = xsede_jobsubmission_cert.pem
keyFile = xsede_jobsubmission_key.pem
communityProxyFile = xsede_proxy.raw
communityRefreshInterval = 120
proxyGenerator = grid
personalizeMethod = copy
userProxyFile = xsede_@@HUBUSERID
refreshMethod = jobMonitor
refreshInterval = 60
permanentUsers = gridman

SUBMIT CONFIGURATION - MONITORS

● Parameters for configuring job tracking monitors located on remote resources

[stampede]
venue = stampede.tacc.xsede.org
venuePort = 2222
venueMechanism = gsissh
identityManager = XSEDE
remoteMonitorCommand = ${HOME}/Demo/monitors/stampede/monitorSLURM.py

SUBMIT CONFIGURATION - APPACCESS

● Parameters used to manage who can execute which applications on remote resources

[users]
whitelist = /apps/.*
priority = 0
classification = apps

[users]
blacklist = /apps/share(32|64)/debian7/padre/padre-2.4E/.*
priority = 99
classification = apps

[submit]
whitelist = ${HOME}/.*
priority = 0
classification = home

INSTALLATION ON FOREIGN RESOURCE

● Job management scripts
○ Import files
○ Submit job
○ Kill job
○ Export files
○ Cleanup job

● Job monitoring application
○ Python script for reporting all jobs status

