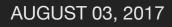
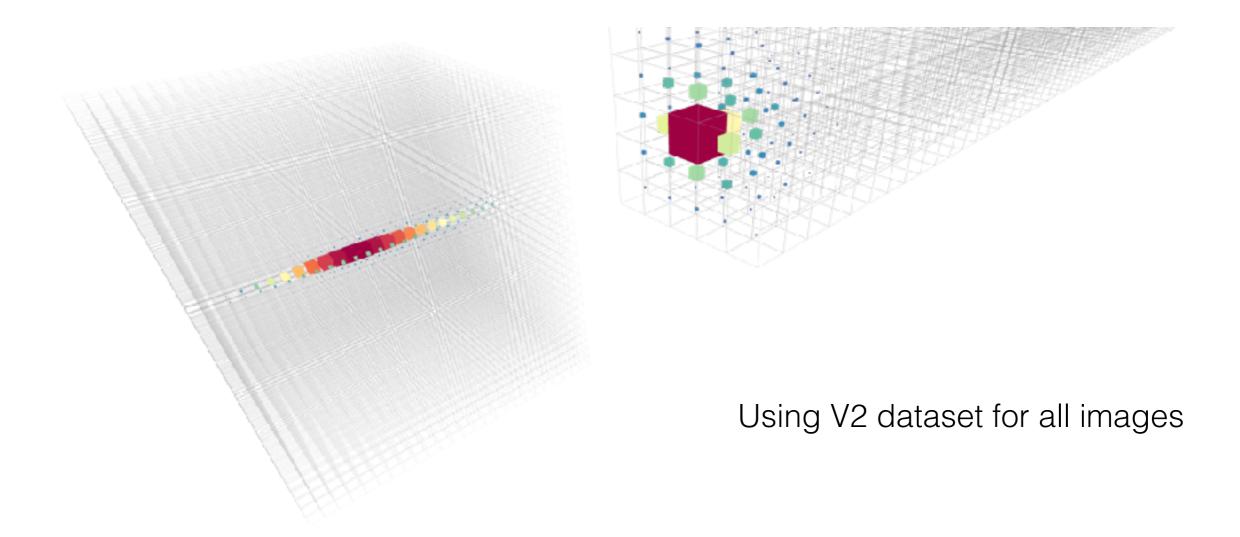


SUMMARY OF CURRENT PROGRESS

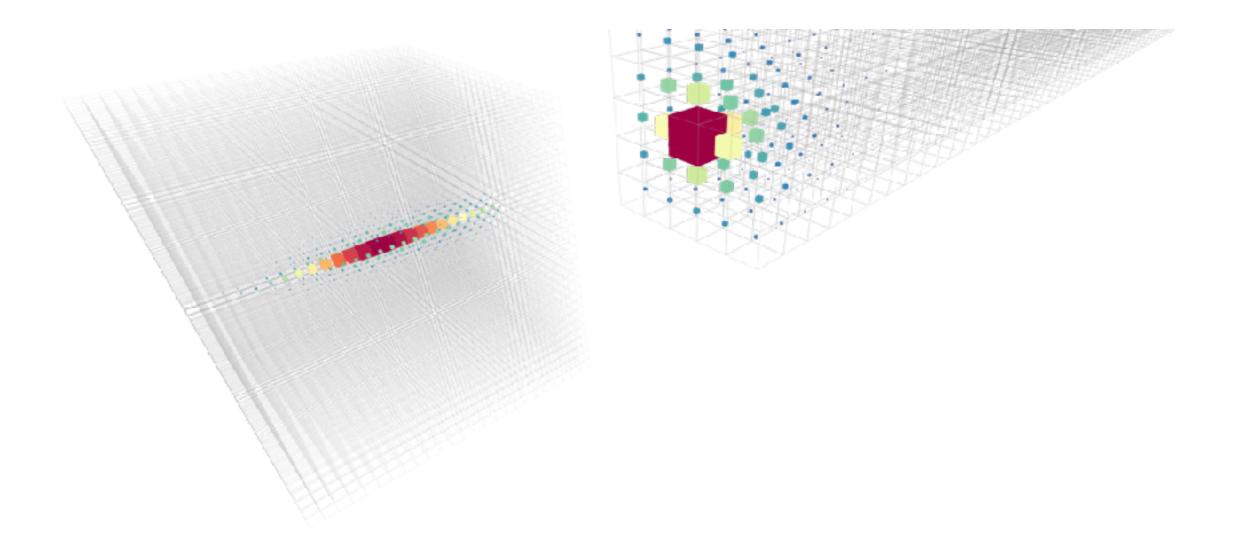
MATT ZHANG



Average 60 GeV electron



Average 105 GeV charged pion

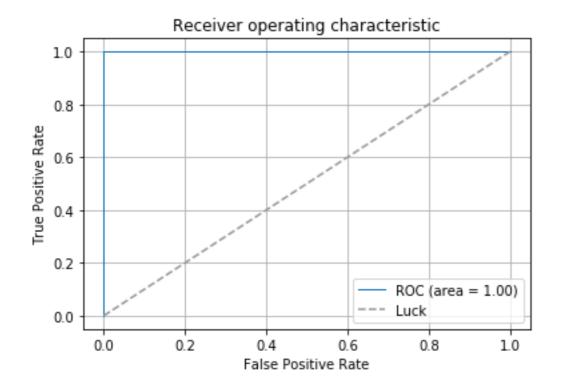


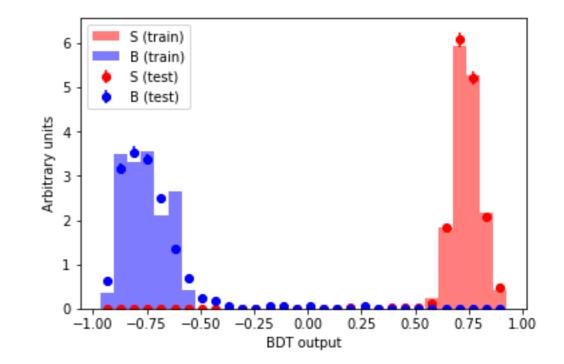
The charged pion deposits its energy further in the ECAL than the electron, and leaves a more diffuse signature in the HCAL, even with the same ECAL/ HCAL ratio.

Electron / ChPi discrimination seems easy to do.

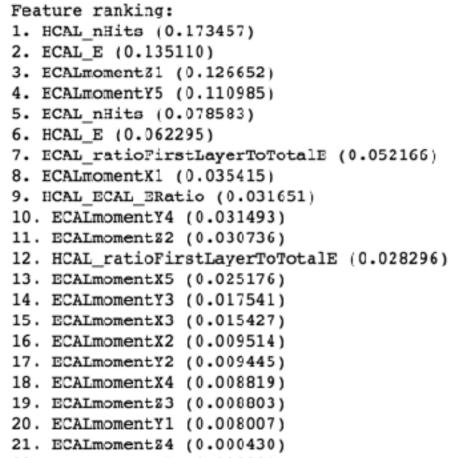
	precision	recall	f1-score	support
charged pion electron	1.00	0.99 1.00	1.00 1.00	395 3275
avg / total	1.00	1.00	1.00	3670

Area under ROC curve: 1.0000

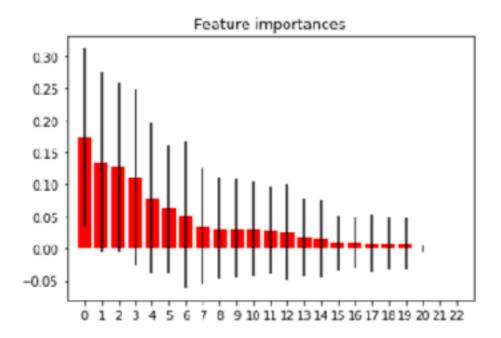




E - ChPi BDT



- 22. ECALmoment25 (0.000000)
- 23. HCAL_ECAL_nHitsRatio (0.000000)



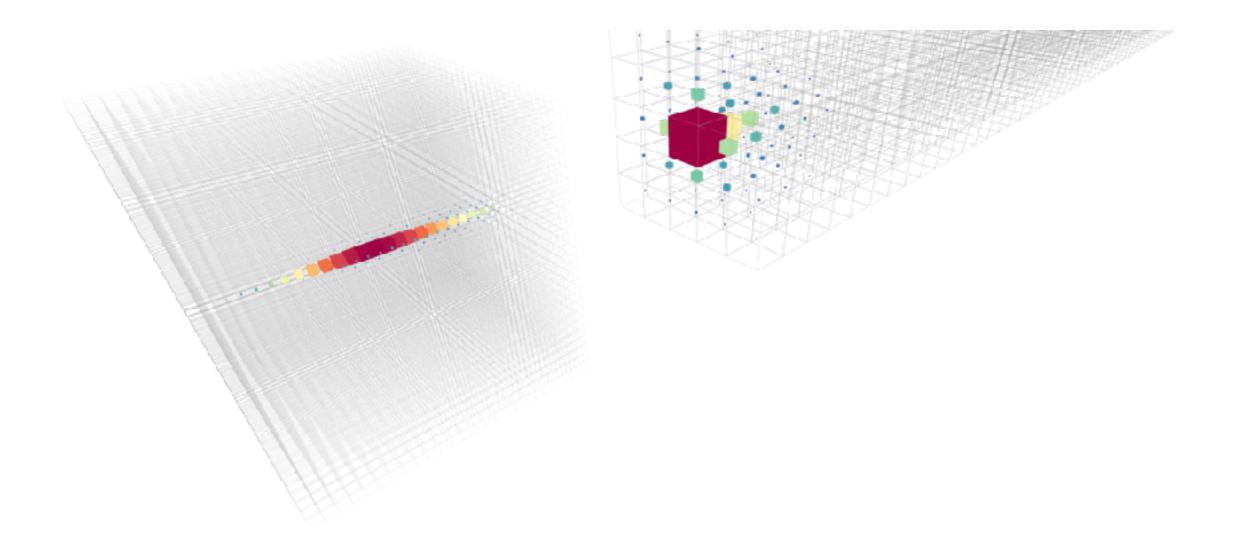
data may be fishy - needs further investigation

γ - pi0 BDT

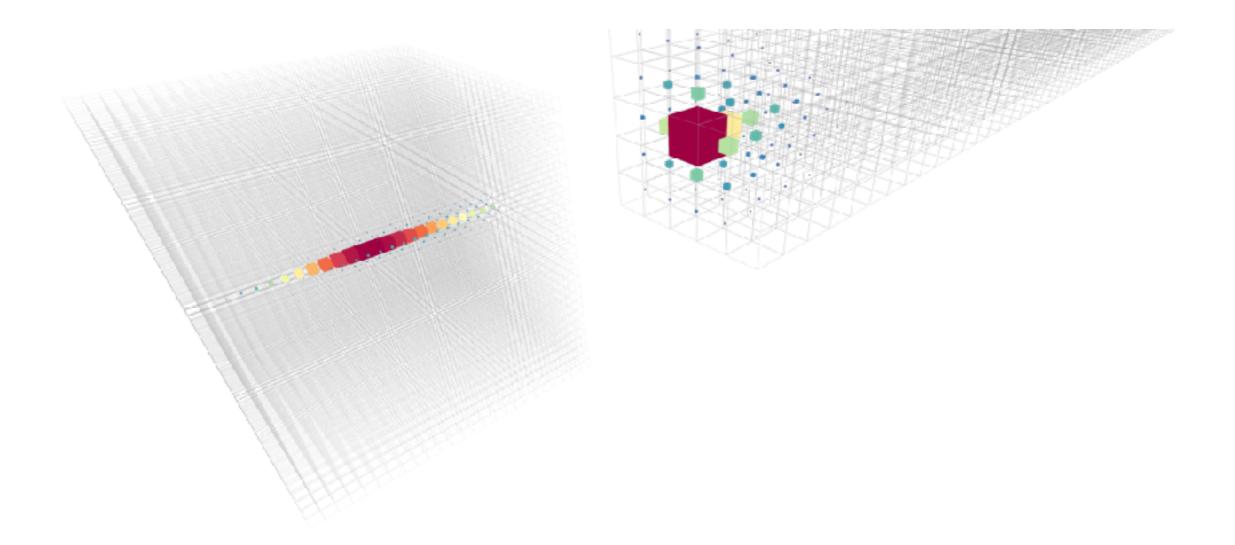
E - ChPi DNN

Technical problems - plot not available. See backup for details.

Average 60 GeV photon

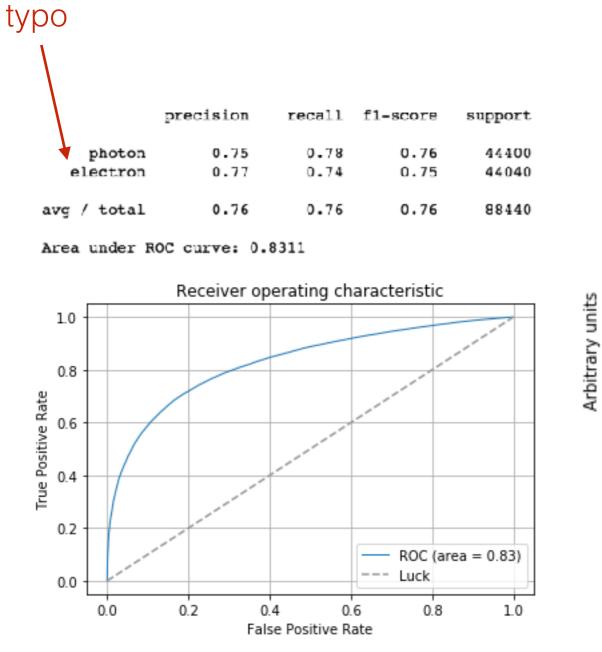


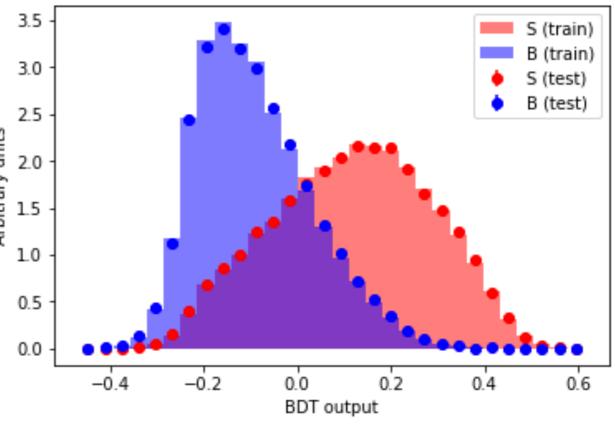
Average 60 GeV neutral pion



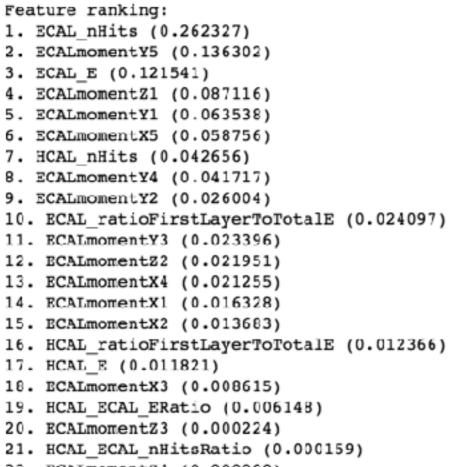
Difference is subtle, but the Pi0 $\rightarrow \gamma\gamma$ is more spread out in both ECAL and HCAL.

The opening angle for these Pi0 events is less than 0.01 radians.

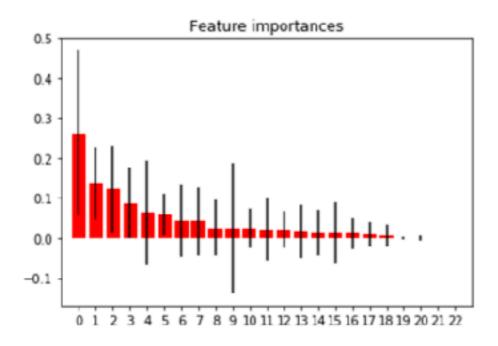


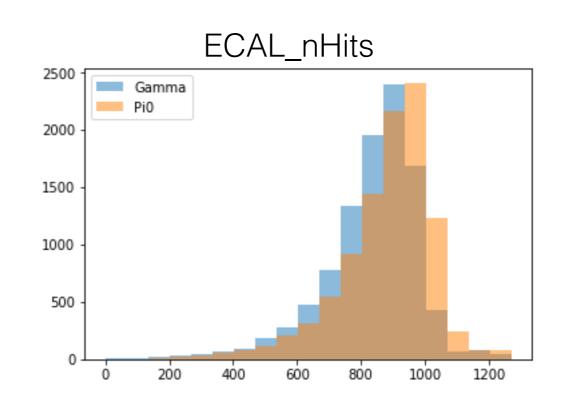


γ - pi0 BDT

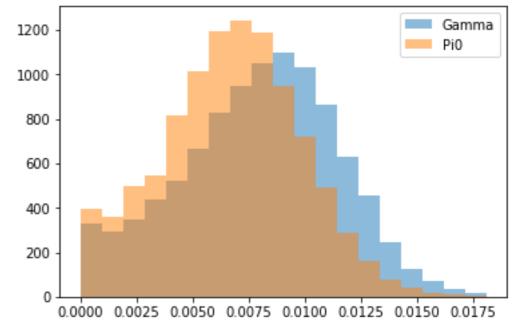


- 22. ECALmomentZ4 (0.000000)
- 23. ECALmomentZ5 (0.000000)

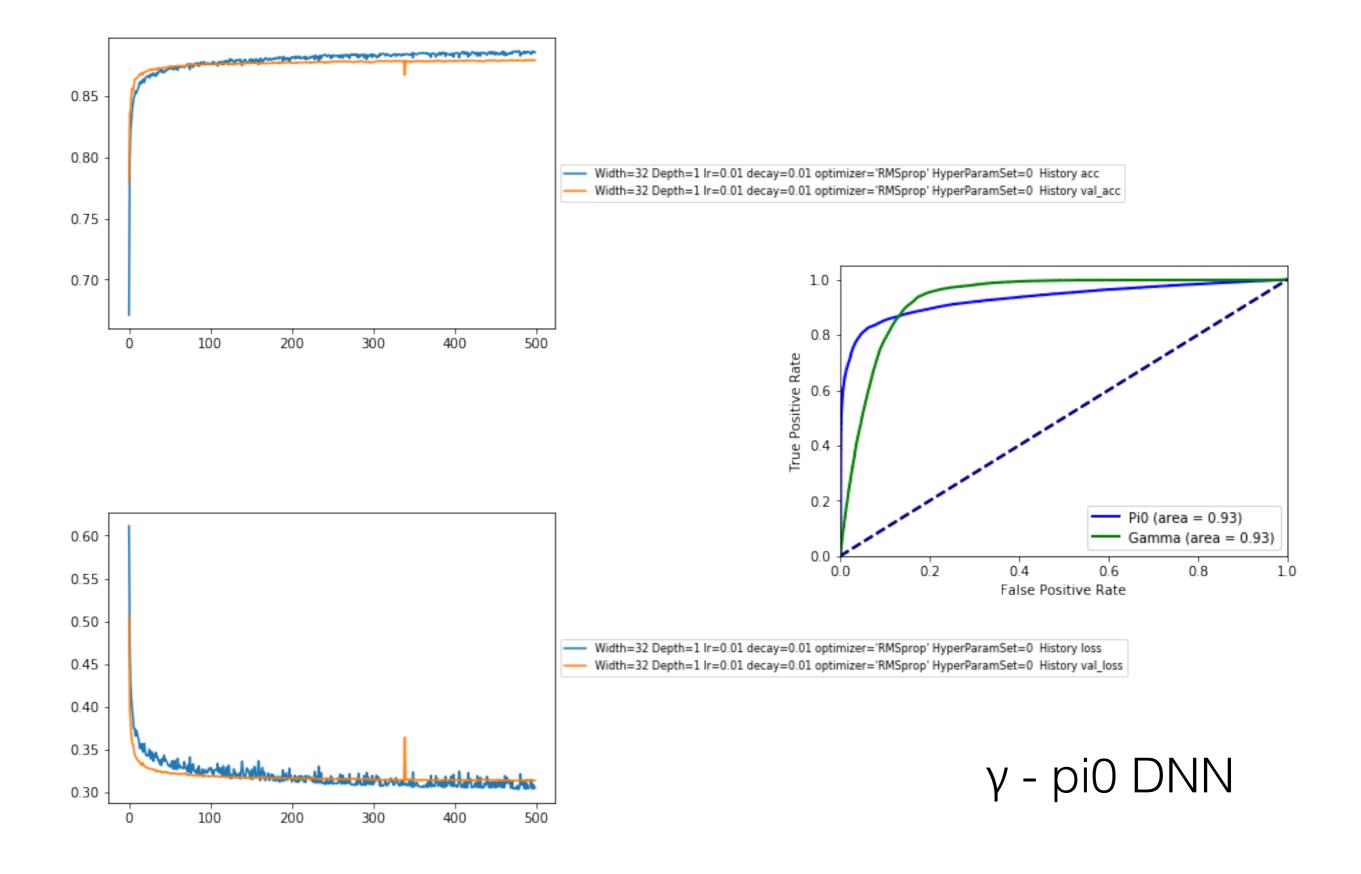




ECALmomentY5



γ - pi0 BDT



Layer (type)	Output Shape	Param 🖻	Connected to
input_1 (InputLayer)	(None, 25, 25, 25,) D	
input_2 (InputLayer)	(None, 5, 5, 60)	0	
flatten_1 (Platten)	(None, 15625)	0	input_1(0)(0)
flatten_2 (Flatten)	(None, 1500)	D	input_2[0][0]
activation_1 (Activation)	(None, 15625)	0	flatten_1[0][0]
activation_4 (Activation)	(None, 1500)	0	flatten_2[0][0]
dense_1 (Dense)	(None, 64)	1000064	activation_1[0][0]
dense_3 (Dense)	(None, 32)	48032	activation_4[0][0]
activation_2 (Activation)	(None, 64)	0	dense_1[0][0]
activation_5 (Activation)	(None, 32)	D	dense_3[0][0]
dropout_1 (Dropout)	(None, 64)	0	activation_2[0][0]
dropout_3 (Dropout)	(None, 32)	D	activation_5[0][0]
dense_2 (Dense)	(None, 64)	4160	dropout_1[0][0]
dense_4 (Dense)	(None, 32)	1056	dropout_3[0][0]
activation_3 (Activation)	(None, 64)	D	dense_2[0][0]
activation_6 (Activation)	(None, 32)	0	dense_4[0][0]
dropout_2 (Dropout)	(None, 64)	0	activation_3[0][0]
dropout_4 (Dropout)	(None, 32)	D	activation_6[0][0]
concatenate_1 (Concatenate)	(None, 96)	0	dropout_2[0][0] dropout_4[0][0]
dense 5 (Dense)	(None, 2)	194	concatenate 1[0][0]

γ - pi0 DNN

Paper Outline

- 1. Background and purpose
- 2. Brief description of how machine learning techniques work
- 3. Description of areas where improved particle ID can be beneficial
- 4. Dataset generation using the CLIC LCD detector
- 5. Examination of generated data
- 6. Description of BDT baseline
- 7. Description of DNN
- 8. Description of CNN
- 9. Comparison of results
- 10. Conclusion

Maybe could add an appendix on data handling, generators, etc. (Amir?)

Need some help here (Ben?)

Outstanding To-Do Items

- Improve and test n-subjettiness in BDT \rightarrow Matt, Wei
- Fix generator issue \rightarrow Amir, Matt
- Improve CNN architecture → Matt, Ryan, Amir
 - I tried a few architectures, but they currently train slower than DNN and get worse results
 - Trying out inference-layer architecture from GoogleNet, but have not been able to train on it yet
 - Generate CNN plots for paper
- Generate and validate new samples → Maurizio, Matt
- Write up paper sections → Everyone
- (Not for paper) Create samples at multiple pT points, and also for μ and $\tau \rightarrow$ Maurizio, Wei
- (Not for paper) Create samples with pileup \rightarrow Maurizio, Wei
- (Not for paper) Create samples at multiple incident angles → Maurizio, Wei
- (Not for paper) Use semantic segmentation algorithms to identify object locations in calorimeter → Matt, Ryan, Amir

Bugs

- "top" on UTA cluster reveals that I have several python processes in uninterruptible sleep - requires hard reboot of cluster.
- I can not open files to read into Keras net as of two days ago, probably due to this issue.