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Purpose of this project

To give native Numpy support to ROOT.

Potential aspects:

1. TTree branches → Numpy arrays.

2. Numpy arrays → TTree branches.

3. PyROOT ROOT.std.vector (etc.) → Numpy.

This talk addresses only #1, but the others aren’t off the table.
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Why? Isn’t there a root numpy?

root numpy is an external project that uses Cython and
TTreeFormula to fill Numpy arrays.

We want Numpy support. . .

I to be a part of ROOT (to streamline interaction with
machine learning libraries, for instance),

I without unnecessary dependencies (Numpy only),

I taking advantage of ROOT internals for performance.

In fact, this is a great application of Brian’s BulkIO.
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Scope of TTree branches → Numpy arrays

I A single-leaf branch becomes a Numpy array.

I Multidimensional leaves (with “[...]” in the title) affect the
shape (dimensionality) of the array— one-to-one with TLeaf.

I Variable length leaves (with “[counter]” in the title)
require the counter to be read and maybe returned to the user.

I A “leaf-list” branch becomes a Numpy record array (like

an array of C structs: row-wise, can’t have different lengths,

can manually set the byte offsets).

I A branch with subbranches becomes a Python dictionary
of Numpy arrays.

I No attempt to reconstruct objects from the branch data;
I have a separate project to do this in Python.
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Implemented interface (low level)

ROOT._numpyinterface.iterate(*branches,
return_new_buffers=True,
swap_bytes=True)

I Returns an iterator over clusters, yielding

(entry_start, entry_end, array, array, array...)

for each cluster.

I return new buffers determines whether arrays should be
read-only views of ROOT’s internal data or copies. Default is
to copy to discourage accidental abuse.

I If all baskets align per cluster, zero-copy is possible.
Otherwise, we need to double-buffer to match entry ranges.

I swap bytes transforms to little endian; in either case, the
correct Numpy flag is set.
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Implemented interface (low level)

ROOT._numpyinterface.dtypeshape(*branches,
swap_bytes=True)

I Just get the types and lengths and do not iterate.

I Useful for setting up allocate-then-fill with the iterator.

ROOT._numpyinterface.performance()

I Get a dictionary of performance counters, to aid
performance-debugging without recompiling.
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Implemented interface (high level)

ROOT.numpyinterface.arraydict(*branches,
allocate = lambda shape, dtype:

numpy.empty(shape, dtype=dtype),
trim = lambda array, length: array[:length],
swap_bytes = True)

I High-level interface to filling arrays with overridable allocators.

I Have to trim dtypeshape’s overestimate.

ROOT.numpyinterface.recarray(*branches,
swap_bytes = True)

ROOT.numpyinterface.iterate_pandas(*branches)
ROOT.numpyinterface.pandas(*branches)

I Maybe also PyTables (for HDF5), etc.

I All implemented in Python for import-flexibility.
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Performance measurements
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Performance measurements

Test file: flat ntuple of px, py, pz, mass for 751 919 dimuons.

px, py, and pz are basket-aligned, but mass is not. Thus,

p =
√
px2 + py 2 + pz2

doesn’t involve any double-buffering but the following does:

E =
√
px2 + py 2 + pz2 + m2

Three compression cases:

I uncompressed

I LZ4 level 7 (future default); this file doesn’t gain much from
compression (1.0), but it is in the headers

I deflate level 1 (old default); still not much advantage (1.07)

19 / 25



Performance measurements

Test file: flat ntuple of px, py, pz, mass for 751 919 dimuons.

px, py, and pz are basket-aligned, but mass is not. Thus,

p =
√
px2 + py 2 + pz2

doesn’t involve any double-buffering but the following does:

E =
√
px2 + py 2 + pz2 + m2

Three compression cases:

I uncompressed

I LZ4 level 7 (future default); this file doesn’t gain much from
compression (1.0), but it is in the headers

I deflate level 1 (old default); still not much advantage (1.07)

20 / 25



Performance measurements

Test file: flat ntuple of px, py, pz, mass for 751 919 dimuons.

px, py, and pz are basket-aligned, but mass is not. Thus,

p =
√
px2 + py 2 + pz2

doesn’t involve any double-buffering but the following does:

E =
√
px2 + py 2 + pz2 + m2

Three compression cases:

I uncompressed

I LZ4 level 7 (future default); this file doesn’t gain much from
compression (1.0), but it is in the headers

I deflate level 1 (old default); still not much advantage (1.07)
21 / 25



Performance measurements

Numpy: each step— squaring, adding, square root— creates
intermediate arrays; calculations performed one
column at a time in precompiled code.

Numba: Python code is JIT-compiled with LLVM, basically
what one would do in C, but with Python syntax.

view/copy: compare direct views of internal ROOT data with
making intermediate copies.

root numpy: calls TTreeFormula to fill an array, then do Numpy
method.

SetBranchAddress: the traditional method, entirely in C++.

TTreeReader: the ROOT 6 method, entirely in C++.

TTree::Draw: use TTree’s histogram-filling method.

BulkIO in C++: not tested, couldn’t get it to work (yet).

TDataFrame: not tested
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Performance measurements

(Lower is better.)
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Conclusions

I BulkIO is ∼5× faster than SetBranchAddress

I At this new rate, decompression is a bottleneck but LZ4
handles poorly compressed data gracefully.

I Number of memory copies is not as relevant:

I view vs. copy does not show much difference (15%)
I Numpy makes many copies and is only ∼2× worse

I Not shown here, but byte-swapping has negligible effect.
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Status and next steps

I I need to handle variable-length branches, add a formal
test suite, and handle all the cases on page 10.

I Functions currently take filePath, treePath, *branches as
arguments, should accept PyROOT TBranches!

I Should be integrated into PyROOT in general.

Could someone help me with that? It could be the way I
get introduced to the internals of PyROOT.

I Should be integrated into the standard ROOT build
system, should be code-reviewed, agree on name and style
conventions (remembering that this is for use in Python).

I Aiming for ROOT 6.12 in December.
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