
Optimizing Files for
Analysis

Brian Bockelman

22 June 2017

Idea #1: 
One Basket Per Cluster

• With a simple tweak, we can force ROOT to continue growing basket sizes so there is one-
per-cluster.

• Why?

• We already suggest all TTree users logically think in terms of event clusters.

• Would make the bulk IO APIs faster — unaligned basket boundaries cost speed!

• Merging by event clusters becomes trivial.

• Smaller chance of disk IO between cluster boundaries: more predictable performance.

• Makes OptimizeBaskets trivial.

• Why not?

• Potentially significant memory costs for “surprisingly large events.” Bad for highly
variable event sizes (i.e., when average is 1MB/evt but max is 1GB/evt).

Idea #2:
More aggressively resize baskets
• We currently shrink baskets when they are 2x larger than the historical

average.

• Idea: whenever we double a basket size while filling, resize it to N%
(N=120?) of occupied size when a flush is performed.

• Example: suppose we have a 1MB basket and we have to put in a
1.1MB object. We would immediately resize the basket to 2MB. The
basket size would stay at 2MB.

• With this change, at the event cluster boundary, we would shrink the
memory usage to 1.1*1.2 = 1.32MB.

• Goal: tighten lower bound on the difference between “minimum memory
size” and “used memory size”.

CMS Test
• Does this make a difference?

• Started with a CMS real-data AOD file from 2017, from the SingleMuon primary dataset.

• Writing with CMSSW:

• Default ROOT settings (20MB AutoFlush) -> peak RSS 837MB

• 50MB AutoFlush -> peak RSS 1020MB.

• 50MB AutoFlush, one basket per cluster -> peak RSS 1403MB.

• 50MB AutoFlush with shrinking -> 1020MB. (no change!)

• 50MB AutoFlush, one basket per cluster, with shrinking -> 1088MB.

• Reading with CMSSW:

• 50MB AutoFlush -> 738MB

• 50MB AutoFlush, one basket per cluster -> 827MB

CMS AOD Test -
Compression

• Going into a detour about compression levels. Default for this file is LZMA-4
(resulting in a 2,816MB file) with 15MB auto-flush (CMS default).

• CMSSW peaks at 840MB RAM to re-compress this file.

• With a 10MB auto-flush

• None: 12,059MB file, 7.5 minutes

• ZLIB-7: 3,150MB file, 11 minutes (compression @ 15MB/s), 792MB RSS,
0.021s/evt

• ZLIB-9: 3,129MB file, 27 minutes (2.7MB/s), 797MB RSS, 0.11s/evt

• LZMA-4: 2,925MB, 33 min (1.9MB/s), 814MB RSS, 0.15s/evt

• LZMA-9: 2,891MB, 51 min (1.1MB/s), 821MB RSS, 0.26s/evt

CMS AOD Test -
Compression

• Repeating with 20MB auto flush settings (timings are
about the same):

• ZLIB-7: 2,996MB, 859MB RSS

• ZLIB-9: 2,974MB, 862MB RSS

• LZMA-4: 2,739MB, 869MB RSS. -2.7% from baseline
file size, +29MB RSS

• LZMA-9: 2,701MB, 863MB RSS. -4.1% from baseline,
+23MB RSS

CMS AOD Test -
Compression

• Repeating with 30MB auto flush settings (timings are about the
same):

• ZLIB-7: 2,941MB, 888MB RSS,

• ZLIB-9: 2,918MB, 890MB RSS

• LZMA-4: 2,666MB, 931MB RSS.

• -5.3% from baseline, +91MB RSS

• LZMA-9: 2,626MB, 934MB RSS.

• -6.5% from baseline, +94MB RSS

CMS AOD Conclusions
• Basket clustering:

• Aggressive shrinking made the most difference when combined with one basket per cluster.

• One basket per cluster - with shrinking - cost about 60MB at write time.

• One basket per cluster cost about 89MB at read time.

• Modest decrease in number of baskets (10%).

• Conclusion: forcing one-basket-per-cluster has little advantage for CMS EDM.

• Next week - revisit the idea for ntuples.

• Compression updates:

• For about 60MB of RSS at write time, one can decrease file sizes by about 5%.

• Probably not going to increase LZMA settings until we have IMT enabled for writes.

