

R(D) AND R(D*) MEASUREMENTS AT LHCb-MUONIC TAU CHANNELS

2ND LHCB OPEN SEMITAUONIC WORKSHOP

Monday 13 November 2017

BRIAN HAMILTON

The LHCb Detector

- Focus on forward direction to exploit highly-boosted b quark production in multi-TeV collisions: cover 27% (25%) of (pair) production while instrumenting < 3% of the solid angle
- \circ Single arm spectrometer optimized for beauty and charm physics at large η :
 - Trigger: ~90% efficient for dimuon channels, ~30% for all-hadronic
 - $^{\circ}$ Tracking: $\sigma_p/p \sim 0.4\% 0.6\%$ (p from 5 GeV to 100 GeV), $\sigma_{IP} < 20~\mu m$
 - Vertexing: $\sigma_{\tau} \sim 45$ fs for B_s->J/ $\psi \varphi$
 - PID: 97% μ ID for 1-3% π -> μ misID
 - Dipole magnet polarity periodically flipped to change the sign of many reconstruction asymmetries

What we want to measure

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^-\bar{\nu}_{\mu})}$$

At LHCb, stick to muonic mode for denominator

- $^{\circ}$ Electron modes not strictly impossible, but e^{\pm} reconstruction is lower efficiency, poorer p_e resolution
 - Both effects largely from Brem.
- Experimentally, we have a menu of options to choose from for reconstructing the tau:

$$\circ \tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$$
 This talk

- Identical (visible) final state is optimal for cancelling systematic uncertainties in reconstruction
- Automatic normalization at hadron colliders

o
$$au^- o \pi^- \pi^+ \pi^- (\pi^0) v_{ au}$$
 Next Talk

- Reconstructible tau vertex, but short lifetime makes this hard to exploit in B factories
- Normalization is difficult: either large systematics from reconstruction of additional tracks or have to measure relative to hadronic B decay

Distinguishing $b \to c\tau (\to \mu\nu\nu)\nu$ from $b \to c\mu\nu$

$\overline{B}{}^0 o D^{*+} au^-\overline{ u}$	$\overline{B}{}^0 o D^{*+}\mu^-\overline{ u}$
$m_{miss}^2 > 0$	$m_{miss}^2 = 0$
E_l^st spectrum is soft	$E_{m{l}}^*$ spectrum is hard
$\mathrm{m}_{\tau}^2 \leq q^2 \leq 10.6~\mathrm{GeV}^2$	$0 \le q^2 \le 10.6 \text{ GeV}^2$

Challenges in LHC data

- oIn hadron collisions, things are not nearly as "nice" as in $\Upsilon(4S)$ decay at the B-factories
 - Unknown CM frame for $gg \rightarrow b\bar{b}$ production
 - Lots of additional particles in the event (showering, MPI etc)
 - Inclusive secondary vertex triggers are explicitly biased in missing mass
- ODifferent handles are needed to deal with
 - Missing neutrinos
 underconstrained kinematics
 - Partial reconstruction of signal decay \rightarrow Large_backgrounds from partially-reconstructed B decays with "missed" final state particles (e.g. $B \rightarrow D^{*+} (n \ge 1\pi) \mu \nu$, $B \rightarrow D^{*+} H_c (\rightarrow \mu \nu X) X$)

Additional Challenge: low p_T signal

$$p_T(B) = 5 \text{ GeV}, \eta(B) = 3.0$$

- ORoughly speaking, average muon p_T in semileptonic decays is proportional to E_ℓ^*
 - Requires independence from harsh L0 muon trigger cuts
 - Rely on HCAL trigger or events tiggered independently of signal
 - Requires PID cuts be loose or custom-calibrated for flat efficiency in PT

Analysis Technique

- No information on initial B momentum to reconstruct the discriminating variables
 - Key: Resolution on rest frame variables doesn't matter much because distributions are broad to begin with -- well-behaved approximation will still preserve differences between signal, normalization and backgrounds
- Make use of superb tracking system to fight huge partially-reconstructed background
 - $^{\circ}$ Scan over every reconstructed track and compare against $D^{*+}\mu^-$ vertex with machine-learning algorithm
 - Allows for cleaner signal sample *and* data control samples enriched in key backgrounds
 - Very important for the lower purity at LHCb vs B factory -- must model these backgrounds *in detail!*

Challenges: Semileptonic Backgrounds

- \circ Contributions of excited charm states in the $B^{\pm,0} \to (c\bar{q})\mu\nu$ transition are large
 - We directly fit for contributions of 1P states constrained and unconstrained
 - Excellent consistency of resulting R(D*) with and without external measurements as input
 - $^{\circ}$ $D^{*+}\mu^{-}\pi^{-}$ control sample sets nonperturbative shape parameters for input to signal fit $^{\sim}$ 1.8% relative systematic
 - States decaying as $D^*\pi\pi$ less well-understood, fit insensitive to exact composition.
 - $D^{*+}\mu^-\pi^+\pi^-$ control sample used to correct q^2 spectrum to match data ~ 1.2% relative systematic
- \circ Distinguishable by "edge" at missing mass $pprox (2) m_{\pi}$
- Use mu component plus reasonable guess (with large error bars) on R(D**) to constraint tau component (only adds 1.5% relative systematic)

LHCb-PAPER-2015-025 supplementary

$B \to D^{*+}H_c(\to \mu\nu X')X$ background

- $b \to c\bar{c}q$ decays can lead to very similar shapes to the semitauonic decay (e.g. $\bar{B}^0 \to D^{*+}D_s^-(\to \phi\mu\nu)$ +many others)
- $^{\circ}$ Branching fractions well-cataloged, but detailed descriptions of the $D^*DK(n\geq 0~\pi)$ final states are not simulated using full Dalitz plot description
 - Dedicated $D^{*+}\mu^-K^\pm$ control sample used to improve the template to match data
 - (1.5% relative systematic)
- Nastiest background unconstrained in fit (major contributor to statistical uncertainty)

Control sample fit projections

LHCb-PAPER-2015-025 supplementary

 $D^{*+}\mu^-\pi^-$ Used for $\bar{B} \to D^{**}(1P)\mu\nu$ Form Factors

 $D^{*+}\mu^-\pi^-\pi^+$ Used to calibrate $\bar{B} \to D^*\pi\pi\mu\nu$ q^2 Shapes

 $D^{*+}\mu^-K^\pm$ Used to calibrate $\bar{B} \to D^*H_c[\to \mu\nu X]$ Shapes

Detailed fit projections

- Projections of (left) m_{miss}^2 and (right) E_μ^* in bins of increasing q^2 from top to bottom
- Full range of q^2 important for verifying modeling of resolution effects
 - Requiring good fit for $D^*\mu\nu$ across the whole spectrum *and* consistency between fitted FFs and HFLAV average -> very strong constraint on simulation resolution & correlations
- Cross check: verify that simulation cocktail at best fit point reproduces data kinematics well
- Final result:

$$R(D^*) = 0.336 \pm 0.027 \pm 0.030$$

Next steps in LHCb muonic $R(D^{(*)})$

Phage II

$R(D^0)$ vs $R(D^{*+})$ with $D^0 \to K^-\pi^+$ and $\tau \to \mu \bar{\nu} \nu$

$$\frac{B^{-} \to D^{*0} [\to D^{0} (\pi^{0} / \gamma)] \mu \bar{\nu}}{B^{-} \to D^{0} \mu \bar{\nu}} \approx 2.5 \quad \frac{B^{0} \to D^{*+} [\to D^{0} \pi_{missing}^{+}] \mu \bar{\nu}}{B^{-} \to D^{0} \mu \bar{\nu}} \approx 0.75$$

$$\frac{B_{s}^{0} \to D_{s}^{**+} [\to D^{0} K_{missing}^{+}] \mu \bar{\nu}}{B^{-} \to D^{0} \mu \bar{\nu}} \approx 0.06$$

- •Muonic $\bar B^0 \to D^{*+} \tau^- \bar \nu$ served as a prototype due to simpler measurement structure, better handles on certain backgrounds
- • $B^- \to D^0 \tau^- \bar{\nu}$ perfectly possible at LHCb
 - Strategy: simultaneous fit to disjoint $D^0\mu^-$ and $D^{*+}\mu^-$ samples
 - Feed-down from D* always present in $D^0\mu^-$ sample \to correlation in R(D) vs R(D*).
 - \circ Simultaneously refitting $D^{*+}\mu^-$ sample helps control this
 - $D^0\mu^-$ sample is 5x larger than $D^{*+}\mu^-$
 - 75% is D* feed down → expect large reduction of statistical error
 - Additional data has more BG, so improvements will be more modest than simple $\sqrt{N_{D^*\tau\nu}}$, but still quite substantial
 - **Challenge:** template fit to such a huge dataset requires very careful evaluation and elimination of data/simulation differences everywhere possible

Improving on R(D*) systematics

Uncertainty breakdown from 2015 measurement:

Contribution of each source to the squared total measurement uncertainty

- Previous result was $R(D^*) = 0.336 \pm 0.027 \pm 0.030$
- Systematic error dominates the pie, but is in turn mostly MC statistical error and uncertainty on the misID background
- •Present status:
 - MC/data ratio improved dramatically
 - $^{\circ}$ Improvements in low-momentum PID will dramatically decrease contamination from $h \to \mu$ misID
 - $R(J/\psi)$ analysis has led to better techniques to construct misID shapes
- •ALSO: more signal data = more control data!
 - Form factors and shape corrections for backgrounds can be more precisely determined
 - Signal/normalization form factors will also be fitted more precisely

In-progress Run 2 Measurement

THE NEXT GENERATION

$R(D^+)$ vs $R(D^{*+})$

- •Frontline Run2 analysis on $R(D^{(*)})$ from LHCb
 - Why not Run1? No trigger!
 - Run1 analysis piggybacked on loose $D^0 \to K^-\pi^+$ charm trigger
 - Other (three+ body) Run1 exclusive charm triggers all cut tightly to remove charm from beauty
 - For Run2:
 - Dedicated trigger optimized around original R(D*) selection for $D^+ \to K^- \pi^+ \pi^+$ and others $(D^0, D_s^+, \Lambda_c^+)$
 - Tests on $D^0 \to K^-\pi^+$ version showed 60% improvement in signal efficiency compared Run1 trigger strategy
- Other improvements being explored
- Result is expected to be of similar or better precision as existing measurements

Summary

- LHCb is continuing efforts to expand its muonic R(D*) measurement to combined R(D) and R(D*)
 - Efforts underway both for a final/ultimate Run1 measurement in $D^0 \to K^-\pi^+$
 - Expecting large improvements in R(D*) in addition to adding R(D)
 - Run2 efforts underway using $D^+ \to K^- \pi^+ \pi^+$

•Other semitauonic measurements using muonic taus are also in progress – see other talks this workshop!

Backup

Heavy Flavor at LHC

- Production dominantly occurs at high η with highly-boosted CM frame
- \circ Central detector ($|\eta| < 2.5$) scheme covers only 52% (45%) of b quark (pair) production despite surrounding >98% of the solid angle
- Alternate approach: focus on forward direction: cover 27% (25%) of (pair) production while instrumenting < 3% of the solid angle

Run 1 Dataset

Rest-frame kinematics at LHCb

- OHow to compute the rest frame of the B in hadron collisions?
 - B flight direction is well-measured, but only provides enough constraints (with B mass) to solve for B momentum with single missing particle
 - Even then, 2-fold ambiguity remains
 - Exact solution impossible without more information
 - Important observation: resolution on rest frame variables not so critical because distributions are broad to begin with

 well-behaved approximation will still preserve differences between signal, normalization and backgrounds

Frue (simulated) distributions

Rest frame approximation at LHCb

- Resolution on rest frame variables doesn't matter much because distributions are broad to begin with
 - A well-behaved approximation will still preserve differences between signal, normalization and backgrounds
 - Take $(\gamma \beta_Z)_{\bar{B}} = (\gamma \beta_Z)_{D^*\mu} \implies (p_Z)_{\bar{B}} = \frac{m_B}{m(D^*\mu)} (p_Z)_{D^*\mu}$
- •18% resolution on B momentum approximation gives excellent shapes to use for fit

Fit

- •Using rest frame approximation, construct 3D "template" histograms for each process contributing to $D^{*+}\mu^-$
 - Signal, normalization, and partially reconstructed backgrounds use simulated events, other backgrounds use control data
 - Templates are functions of any relevant model parameters via interpolation between histograms generated with different fixed values of those parameters
- These templates are then used as PDFs for a maximum likelihood fit to data
- •-> distributions shown previously directly translate to one-dimensional projections of the 3D templates for signal and normalization

Efficiency Ratio

Computed in simulation (with corrections)

$$\frac{\epsilon_s}{\epsilon_n} = (77.6 \pm 1.4)\%$$

Deviation from 100% due to τ flight and lower Muon ID efficiency at low p_{T}

Tau backgrounds

- •All backgrounds with real $\tau \to \mu \bar{\nu} \nu$ decays are an order of magnitude (at least) smaller than the signal
 - Background contributions from $\bar B\to D^{**}\tau^-\bar\nu_\tau$ are considered to be fixed relative to the corresponding decay modes to muons
 - Very small component, varying this contribution by 50% only moves R(D*) by 0.005
 - Similarly, $\bar{B} \to D^{*+}D_s^-(\to \tau^-\nu)X$ are fixed to a known fraction of the $\bar{B} \to D^{*+}H_c(\to \mu\nu X')X$ background
 - Again, these have a negligible effect on R(D*)

Other backgrounds

- •Other backgrounds from "junk" reconstructed as $D^{*+}\mu^-$
 - $^{\circ}$ combinatorial (top), fake D^{*+} candidates (middle), hadrons misidentified as muons (bottom), all derived from control samples

 Misidentification background particularly troublesome due to ambiguities in deriving fit shapes from the control sample

Triggering

Performance paper: JINST 8 P04022 (2013)

- Large cross section for heavy flavor production means a robust triggering system is needed
 - Triggering inclusively as possible is essential in order to not limit the physics program
 - Hardware trigger relies on muon and calorimetery
 - $^{\circ}$ Software high-level trigger performs full event reconstruction for all tracks above 300 MeV of p_{T}

oFor this measurement:

- Trigger signal and normalization through the exclusive charm trigger path in software
 - Moderately high $p_T D^0 \to K^- \pi^+$ with well-separated vertex that loosely points to a PV in the event
- No hardware muon trigger requirement

Event Selection

- •Combine $D^0 \to K^-\pi^+$ candidate passing charm trigger with μ^- and π^+_{slow}
 - Require $D^0 \to K^-\pi^+$ decay vertex well-separated from PV
 - $^{\circ}$ Require $\mu^-, K^-\pi^+$ all to have significant impact parameter with respect to PV
 - Remove prompt charm background with impact parameter requirements on $D^0 \to K^-\pi^+$ (main background killed by full event reco at B-factories)