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The LHCb Detector

HCAL bb production
ECAL M4 MS .
oo M3 . dominantly
— at lower py:
parton CM frame

highly boosted

At 7 TeV:
Oipet ~ 70 Mb
Oy, ~ 06 mb
Opy ~ 280 ub

oFocus on forward direction to exploit highly-boosted b quark production in multi-TeV collisions:
cover 27% (25%) of (pair) production while instrumenting < 3% of the solid angle
VALUE!

oSingle arm spectrometer optimized for beauty and charm physics at large n:
o Trigger: ~90% efficient for dimuon channels, ¥30% for all-hadronic

Tracking: 6,/p ~ 0.4%-0.6% (p from 5 GeV to 100 GeV), 5jp < 20 pm

Vertexing: o~ 45 fs for B.—J/Pd

PID: 97% p ID for 1-3% m—p misID
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Dipole magnet polarity periodically flipped to change the sign of many reconstruction asymmetries



What we want to measure

B(B° -» DWr~i,)
B(B° -» DWu~v,)

R(DW) =

oAt LHCb, stick to muonic mode for denominator

> Electron modes not strictly impossible, but e
reconstruction is lower efficiency, poorer p, resolution

o Both effects largely from Brem. “ .y,
normalization

o Experimentally, we have a menu of options to choose
from for reconstructing the tau:

o1~ = £ Vv, *This talk*
* Identical (visible) final state is optimal for

cancelling systematic uncertainties in
reconstruction

e Automatic normalization at hadron colliders

ot~ - -t (n%)v, *Next Talk*
* Reconstructible tau vertex, but short lifetime B - D**t7 v,
makes this hard to exploit in B factories “signal”

* Normalization is difficult: either large systematics
from reconstruction of additional tracks or have to
measure relative to hadronic B decay



Distinguishing b = ct(—= uvv)v from b — cuv
oln B rest frame, three key kinematic variables: 5

R
-
-
-
’ -7
- -
-
R
-
-
-
ot
o

q* = (pe + py)*
= m2,.

Alternately

q* = (Pg—Pp*)’
= (mg — EB*)Z
B Dy
Mpniss > 0 Mpiss =
E; spectrum is soft E; spectrum is hard
m? < g2 < 10.6 GeV? 0 < g? < 10.6 GeV?



Challenges in LHC data

D->pipi mu(T)
© mass: [1.878+/-0.008) GeV/c2 L H C b

T decaylength: [8.699+/-1.029) mm
© lifetime: [0.258+/-0.023] ctau mm ‘
& decaylength: [17.487+/-0.252] mm

oln hadron collisions, things are not nearly as “nice” as in Y(4S) decay at the B-factories
> Unknown CM frame for gg — bb production
° Lots of additional particles in the event (showering, MPI etc)
° Inclusive secondary vertex triggers are explicitly biased in missing mass

oDifferent handles are needed to deal with
> Missing neutrinos = underconstrained kinematics

o Partial reconstruction of signal decay 2>
Largebackl%ggr%nds from partially-reconstructed B decays with “missed” final state particles

(e.g. B — n > 1m)uv,B - D**H.(—» uvX)X)



Additional Challenge: low pr signal
pr(B) = 5GeV,n(B) = 3.0

Typical LHCb
LO muon
trigger
threshold

pn. (lab frame) (GeV/c)

0.2 0.4 0.6 0.8

re

50% of signal below here

1.2

1.4 1.6
E, (B frame) (GeV)

oRoughly speaking, average muon pr in semileptonic decays is proportional
to E,
o Requires independence from harsh LO muon trigger cuts
o Rely on HCAL trigger or events tiggered independently of signal

> Requires PID cuts be loose or custom-calibrated for flat efficiency in PT



Analysis Technigue
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*No information on initial B momentum to reconstruct the discriminating variables

o Key: Resolution on rest frame variables doesn’t matter much because distributions are broad to begin
with -- well-behaved approximation will still preserve differences between signal, normalization and
backgrounds

*Make use of superb tracking system to fight huge partially-reconstructed background

> Scan over every reconstructed track and compare against D**u~ vertex with machine-learning
algorithm

o Allows for cleaner signal sample *and* data control samples enriched in key backgrounds
o Very important for the lower purity at LHCb vs B factory -- must model these backgrounds *in detail!*



Challenges: Semileptonic Backerounds

B° - Df (2420)u~v, vs B = D**17 v,

Bernlochner et al, PRD 85 094033 (2012) 01F
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oContributions of excited charm states in the B¥? — (cg)uv transition are large
o We directly fit for contributions of 1P states constrained and unconstrained
o Excellent consistency of resulting R(D*) with and without external measurements as input
o D**u~m™ control sample sets nonperturbative shape parameters for input to signal fit ~ 1.8% relative systematic
o States decaying as D*mrm less well-understood, fit insensitive to exact composition.
o D**u~mtm™ control sample used to correct g2 spectrum to match data ~ 1.2% relative systematic

oDistinguishable by “edge” at missing mass ~ (2)m,,

oUse mu component plus reasonable guess (with large error bars) on R(D**) to constraint tau
component (only adds 1.5% relative systematic) LHCb-PAPER-2015-025

supplementary
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B - D*"H_.(— uvX')X background

°oph— ccq decaxs can lead to very similar shapes to the semitauonic decay
(e.g. B® =» D*"D; (= ¢uv) +many others)

o Branchlng fractions well-cataloged, but detailed descriptions of the
D*DK(n = 0 m) final states are not simulated using full Dalitz plot
description

o Dedicated D**u~K* control sample used to improve the template to match data
° (1.5% relative systematic)

o Nastiest background — unconstrained in fit (major contributor to statistical
uncertainty)

BY - D**H.(» uvX")X vs B® - D**17v,
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Control sample fit projections

D**u~m~
Used for
B - D**(1P)uv
Form Factors

D**u~n—m?
Used to calibrate
B - D*mmuyv
q? Shapes

D*tu~K*
Used to calibrate
B - D*H.[> uvX]
Shapes
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average -> very strong constraint on
simulation resolution & correlations

* Cross check: verify that simulation
cocktail at best fit point reproduces data
kinematics well [
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*Final result:
R(D*) = 0.336 + 0.027 + 0.030
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Next steps In
LHCb muonic

R(D™)

Phase lI
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R(D°) vs R(D**) withD® » K™t and T — uvv

B™ - D*O[_) DO(TCO/V)].“17 ~ 25 BO - D** [_) D07-[1:':-11'55:ing]“17

~ 0.75
B~ - DOuv B- - DO%uv

By — Dy**[- D()Kr-rl-lissing]ﬂ17

S0 ~ 0.06

*Muonic B® — D** 177 served as a prototype due to simpler measurement structure,
better handles on certain backgrounds

*B~ — D%~ v perfectly possible at LHCb
o Strategy: simultaneous fit to disjoint D°u~ and D**u~ samples

> Feed-down from D* always present in D°u~ sample — correlation in R(D) vs R(D*).
> Simultaneously refitting D**u~ sample helps control this

o DOu~ sample is 5x larger than D*tu~
o 75% is D* feed down — expect large reduction of statistical error

o Additional data has more BG, so improvements will be more modest than simple
Np+,,, but still quite substantial

> Challenge: template fit to such a huge dataset requires very careful evaluation and
elimination of data/simulation differences everywhere possible



Improving on R(D*) systematics
Previous rfgzzu)lf)szos% +0.027 4+ 0.030

Uncertainty breakdown
from 2015 measurement:

*Systematic error dominates the pie, but is in turn

shape  Eff. Ratio mostly MC statistical error and uncertainty on the

corrections 5% v
% ,;//// misID background
\

*Present status:
o MC/data ratio improved dramatically

SN

o
u\\\\\k

3%

° Improvements in low-momentum PID will
dramatically decrease contamination from h - u
misID

o R(J /1) analysis has led to better techniques to
construct misID shapes

*ALSO: more signal data = more control data!

> Form factors and shape corrections for

Contribution of each source to the squared total backgrounds can be more precisely determined
measurement uncertainty

o Signal/normalization form factors will also be
fitted more precisely




In-progress Run 2
Vlieasurement

I1HE IIEXT GEMERATION
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R(D*) vs R(D*")

*Frontline Run2 analysis on R(D™) from LHCb
> Why not Run1? No trigger!

> Runl analysis piggybacked on loose D° - K~rt charm trigger

o Other (three+ body) Runl exclusive charm triggers all cut tightly to
remove charm from beauty

o For Run2;:

o Dedicated trigger optimized around original R(D*) selection for
DY - K m*n™ and others (D°, D, Af)

> Tests on DY — K~ version showed 60% improvement in signal
efficiency compared Runl trigger strategy

*Other improvements being explored

*Result is expected to be of similar or better precision as existing
measurements



Summary

*LHCb is continuing efforts to expand its muonic R(D*)
measurement to combined R(D) and R(D*)

o Efforts underway both for a final/ultimate Run1l
measurement in D - K™

o Expecting large improvements in R(D*) in addition to
adding R(D)

> Run2 efforts underway using D* - K ntnt

*Other semitauonic measurements using muonic taus are
also in progress — see other talks this workshop!



Backup




Heavy Flavor at LHC

% 6 4 2 0 2 4 6 8 6, [rad] ™2

1

. . . 3m/4
oLHC collisions produce copious amounts of beauty and charm U 6. [rad]
o At 7 TeV: Oz ~6mb
Op ~ 280 pb

o Production dominantly occurs at high n with highly-boosted CM frame

oCentral detector (|n| < 2.5) scheme covers only 52% (45%) of b quark (pair)
production despite surrounding >98% of the solid angle

oAlternate approach: focus on forward direction: cover 27% (25%) of (pair) production
while instrumenting < 3% of the solid angle




Run 1 Dataset
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Rest-frame kinematics at LHCb

oHow to compute the rest frame of the B in hadron collisions?

o B flight direction is well-measured, but only provides enough constraints (with
B mass) to solve for B momentum with single missing particle

o Even then, 2-fold ambiguity remains
o Exact solution impossible without more information

o Important observation: resolution on rest frame variables not so critical
because distributions are broad to begin with

o well-behaved approximation will still preserve differences between signal,
normalization and backgrounds

LHCb-PAPER-2015-025 supplementary
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*Resolution on rest frame variables doesn’t matter much because distributions are broad
to begin with

o A well-behaved approximation will still preserve differences between signal,
normalization and backgrounds

° Take (yB,)5 = (Vﬁz)D*,u =  (pJs =

_Mmp
m(D*u)

*18% resolution on B momentum approximation gives excellent shapes to use for fit

(pz)D*u



Fit
*Using rest frame approximation, construct 3D “template” histograms for

each process contributing to D**u~

o Signal, normalization, and partially reconstructed backgrounds use
simulated events, other backgrounds use control data

o Templates are functions of any relevant model parameters via
interpolation between histograms generated with different fixed values
of those parameters

*These templates are then used as PDFs for a maximum likelihood fit to data

*-> distributions shown previously directly translate to one-dimensional
projections of the 3D templates for signal and normalization

- 70000
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= 60000
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Candidates / ( 3.25 GeVZ/c* )
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Efficiency Ratio

From fit

T~

Known (~17%)

/

N(B® - D**t= (> u"w)v) 1

R(D*) =

N(B® - D**tu=v) B(t~™ - u~vv)

Computed in simulation (with corrections)
€
— = (77.6 + 1.4)%

n
Deviation from 100% due to 7 flight and lower

Muon ID efficiency at low p;




Tau backgrounds

B° - D3;*(2460)t v, vs B® - D*t171,
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*All backgrounds with real T = uvv decays are an order of magnitude (at least)
smaller than the signal

> Background contributions from B — D**t~ ¥, are considered to be fixed relative
to the corresponding decay modes to muons

> Very small component, varying this contribution by 50% only moves R(D*) by
0.005

o Similarly, B - D**D; (= t7v)X are fixed to a known fraction of the B —
D**H.(— uvX")X background

o Again, these have a negligible effect on R(D*)
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-|— Performance paper:

r| e r| N JINST 8 P04022 (2013)

olarge cross section for heavy flavor 40 MHz bunch crossing rate
production means a robust triggering

system is needed ‘U’ ‘U' ‘U’

LO Hardware Trigger : 1 MHz
readout, high Er/Pt signatures

o Triggering inclusively as possible is
essential in order to not limit the
physics program

o Hardware trigger relies on muon and 450 kHz 400 kHz 150 kHz
calorimetery H/pp e/y

o Software high-level trigger performs full O ‘U’ ‘U’

event reconstruction for all tracks above  (gomware High Level Trigger

300 MeV of Pr 29000 Logical CPU cores

Offline reconstruction tuned to trigger
time constraints

oFor t.hIS me,asurement' . . Mixture of exclusive and inclusive
o Trigger signal and normalization \___selection algorithms )

through the exclusive charm trigger 1 1
path in software

> Moderately high p; D - K™t with well-
separated vertex that loosely points to a 2 kHz 2 kHz 1 kHz

PV in the event Inclusive IEm:Iusi?ef Muon and
xclusive

> No hardware muon trigger requirement Topological Charm DiMuon




Event Selection

*Combine DY —» K~ candidate passing charm trigger with u~ and
TSlow
> Require D° - K~ rt decay vertex well-separated from PV

> Require u~, K~ m*all to have significant impact parameter with
respect to PV

> Remove prompt charm background with impact parameter
requirements on D® - K~n™ (main background killed by full event
reco at B-factories)



