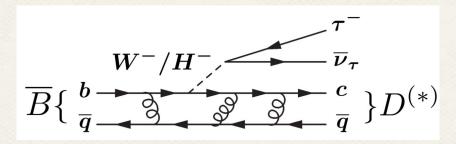
Review of R measurements in LHCb in the hadronic channel

A R's review

Victor Renaudin
on behalf of the LHCb collaboration

LAL, Université Paris-Sud



LFU: a hot topic

- The Standard Model predicts *Lepton Flavour Universality (LFU)*: equal couplings between gauge bosons and the three lepton families
- But, there are tensions between SM expectations and experimental results in:
 - Semitauonic B decays
 - b \rightarrow sll transitions with for instance a 2.4 σ deviation for the recent LHCb result on R(K*0) arXiv:1705.05802
- Several SM extensions add new interactions with a stronger coupling with the third generation of leptons (charged Higgs, leptoquarks, ...)

Why using semitauonic B decays?

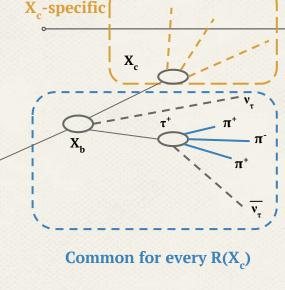
- As tree level decays, they combine some nice features:
 - □ **Precise prediction from SM** using ratios with shared systematics cancelling
 - □ **Abundant channel**: BR(B→D*τν) ~ 1.2%
 - Sensitivity to NP contributions

$$R(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu})}$$

- Different hadronisation schemes are possible:
 - \Box $D^*, D^0, D^+, D_s, \Lambda_c, J/\Psi$
 - □ Not only spectators quarks differ but also the **spin**:
 - $\circ \quad 0: D_s^0, D_s^+, D_s$
 - \circ 1: D*, J/ Ψ
 - \circ $\frac{1}{2}: \Lambda_{c}$

Beyond R(D*)

will be performed in parallel


of hadronic R(D*) Run II

- Ongoing analyses using the hadronic τ decay:
 - $\square \quad R(\Lambda_c): \Lambda_b \to \Lambda_c l v$
 - $\Box \quad R(J/\psi): B_c \to J/\psi l \nu$
- Other possible modes:
 - $\Box \quad R(D^+): B^0 \to D^+ l v$
 - $\Box \quad R(D^0): B^+ \to D^0 l \nu$
 - $\square \quad R(D^{**}): B \to D^{**} lv$
 - $\square \quad R(\Lambda_c^*): \Lambda_b \to \Lambda_c^* lv \text{ with } \Lambda_c^* \to \Lambda_c \pi \pi$
 - $B(D_s): B_s \to D_s lv$
- In a far future:

$$\Box$$
 $B^0 \rightarrow p\tau v$

R(X_c) recipe

- Semileptonic decay without charged lepton in the final state
 - \Box \rightarrow **Zero** background from normal semileptonic decays!
- No signal mass peak but several hadronic ones
 - □ for instance, D^0 →K3π, D^+ →Kππ, ...
 - □ It provides control on the various background channels

- Only one ν at the τ vertex
 - □ **Partial reconstruction can be applied** with good precision
- Prompt 3π background is dominant:
 - \Box Specificities for each X_c but same tool to suppress it: **vertex displacement**
- Double charm background is rejected using a BDT
- Extraction of the measurement using a 3D template fit in q^2 , BDT output and t_{τ}

Double charm background

- The remaining background consists of X_b decays where the 3π vertex is transported away from the X_b vertex by a **charm carrier**: D_s , D^+ or D^0 (in that order of importance)
 - □ Total yield is ~10x higher than SM expectation for signal
 - \Box This background **does not depend** on the nature of X_c
- LHCb has three very good tools to limit this background:
 - \Box 3 π dynamics
 - Isolation criteria against charged tracks and neutral energy deposits
 - Partial reconstruction in both signal and background hypotheses
- A Boosted Decision Tree (BDT) discriminates double charm decays from signal
- The D_s decay model from the $R(D^*)$ analysis can be reused for every $R(X_c)$

$R(\Lambda_c)$

Same strategy as R(D*), the goal is to measure:

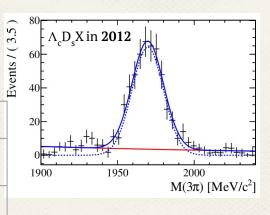
$$R(\Lambda_c) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)}$$

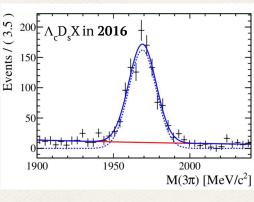
- Precise prediction from LQCD: $R_{SM}(\Lambda_c) = 0.3328 \pm 0.0074_{stat} \pm 0.0070_{syst}$ [1]
- o Probing LFU with a baryon with a different spin structure
- Use of $\Lambda_h \to \Lambda_c 3\pi$ as normalization channel
- Measurement of $R(\Lambda_c)$ on both Run1 and Run2 datasets with an error estimation of:
 - \Box 4% for $\varepsilon_{\text{stat}}$
 - \Box 6-10% for $\varepsilon_{\text{syst}}$
 - □ 7% of uncertainty due to normalization

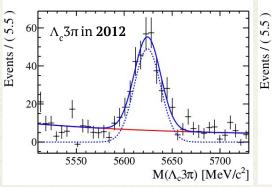
$R(\Lambda_c)$

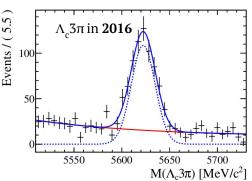
$\Lambda_c au u$, $\mathcal{L} = 0.87 \ fb^{-1}$							
$\Lambda_c^+ 3\pi$ $\Lambda_c^+ D_s^{(*(*))}$	normal inverted	6630 ± 93 495 ± 35					
$\Lambda_c^+ D_s$	inverted	77 ± 10					
$D^* \tau \nu, \ \mathcal{L} = 1.0 \ fb^{-1}$							
$D^*3\pi$	normal	6702 ± 89					
	inverted inverted	404 ± 14					
D^*D_s	inverteu	67 ± 10					

Comparison between $\Lambda_c \tau v$ and $D^* \tau v$ analyses :

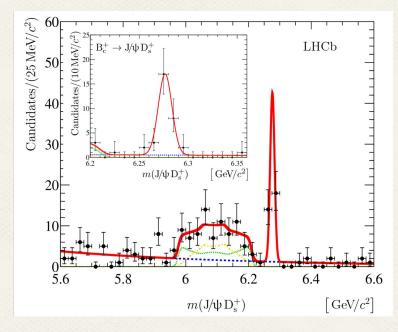

- Λ_c3π, Λ_cD_s peaks on MC and data :data rates are comparable with D*3π and D*D_s
 (lower Λ_b production but higher Λ_c visibility)
- → Same sensitivity expected


 $R(\Lambda_c)$


All plots are using Splot technique to select Λ_c


Yields for each year of data taking per fb⁻¹

Year	2011	2012	2015	2016	2016/2012
$\Lambda_{\rm c}$	5709 ± 92	6749 ± 80	27509 ± 41	29182 ± 336	4.32 ± 0.07
$\Lambda_c D_s X$	202 ± 18	237 ± 11	962 ± 52	1056 ± 48	4.46 ± 0.29
$\Lambda_{c}D_{s}$	37 ± 7	40 ± 4	92 ± 12	110 ± 17	2.75 ± 0.51
$Λ_c$ 3π	129 ± 18	154 ± 10	645 ± 49	627 ± 38	4.07 ± 0.36

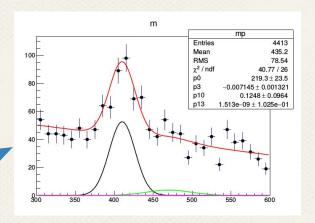


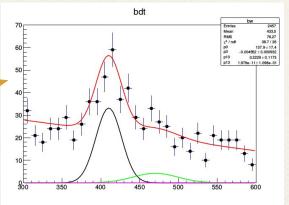
$R(J/\psi)$

The goal is to measure:

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)}$$

- This analysis is using:
 - $\Box \hspace{0.4cm} J/\psi {\to} \hspace{0.4cm} \mu \mu$
 - □ As there is no input from B factories, normalisation channel will be $B_c^+ \rightarrow J/\psi \mu X$




In LHCB-PAPER-2012-010 [1], the decay $B_c \rightarrow J/\psi D_s$ is observed with $D_s \rightarrow KK\pi$ with 3 fb⁻¹ of data (BR ~5 times larger than $D_s \rightarrow 3\pi$)

R(D₁(2420)°)

In the R(D*) analysis:

- O Background contribution from D^{**} states such as $D_1(2420)^0 \rightarrow D^{*+}\pi^-$
- Upper limit in Run I, a measurement of $R(D_1(2420)^0)$ can be performed with Run II data.
- To illustrate, up plot shows $m(D^{*-} \pi^{+})$ - $m(D^{*-})$ without a BDT cut (enriched in $D^{**}D_{s}$ events) and the bottom one shows the same distribution with a BDT cut (should contain a large fraction of $D^{**}\tau \nu$ events).

Normalisation

How to normalise hadronic analyses?

- R(D*): Use of two external BR from PDG
 - \Box B⁰ \rightarrow D*3 π , 4% uncertainty
 - \Box B⁰ \rightarrow D* $\mu\nu$, 2% uncertainty

What can we do with other modes?

- Direct normalisation using same strategy:
 - \Box $\Lambda_b \rightarrow \Lambda_c 3\pi$, 14% uncertainty

- Use of inputs from LQCD to reuse $R(D^*)$ normalisation:
 - for instance: $K = \frac{\Gamma(\Lambda_b^0 \to \Lambda_c^+ \mu \nu)}{\Gamma(B^0 \to D^+ \mu \nu)}$ [1]
- Investigate other modes:
 - $\Box \qquad \Lambda_b \longrightarrow \Lambda_c D_s$
 - $\Box \qquad B_c^{} \longrightarrow J/\psi D_s^{}$
 - \Box $\Lambda_b \rightarrow \Lambda_c \mu \nu$

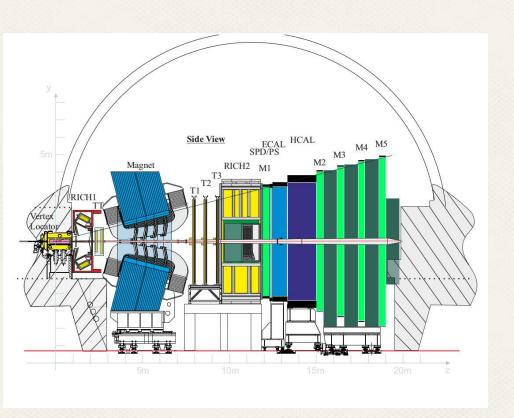
With $D_s \rightarrow 3\pi$, closer topology to signal but low Branching fraction

Conclusion

After R(D*), more modes are coming

- Probing LFU with different spin structure
- \circ R(Λ_c) and R(J/ ψ) are ongoing
- Run1 and Run2 combinations will allow great statistical improvement

R(D*) tools and strategy can be applied for other modes:


- Yields of control channels in the $R(\Lambda_c)$ analysis are very similar
- Normalisation strategies for each mode have to be studied

Thank you for your attention!

Any question?

Backup

The LHCb detector

- **Single arm spectrometer** at LHC in the pseudorapidity range $2 < \eta < 5$
- Optimized to study hadron decays containing **b** and **c** quarks:
 - ☐ CP violation, rare decays, heavy flavor production;
- Excellent vertex resolution and separation of B vertices
- Good momentum and mass resolution
- Excellent PID capabilities (good separation K-π and muon identification)