Complementary measurements for the upcoming high precision semitauonic campaign

GUY WORMSER LAL, CNRS/IN2P3, PARIS SACLAY UNIVERSITY

Rationale

- In 2018-2020, LHCb will publish its semitauonic RunII-based results. The statistical precision for the favoured modes (R(D*),R(D), R(Lc)) will be significantly below 5%
- ... To be followed by BELLE-II
- We must try to launch now an HEP-wide effort to measure all the important « bread-and-butter » measurements that play a significant role in the systematic uncertainty budget
- Some impact all R(D) measurements, some are quite specific..
- Some can be performed in several experiments, some only in a single one....
- Are not addressed here the measurements more directly related to R(X) such as R(D**), D*lnuX,...

$X_b \rightarrow D^*D^0X$ control sample

- X_b→D*D⁰X decays can be isolated by selecting exclusive D⁰→K⁻3π decays (kaon recovered using isolation tools).
- A correction to the q² distribution is applied to the simulation to match the data.

universitė

Measurements useful for all R(D) analysis

Double charm decays

- B→D*(*) Ds(*,*,**)
 - \times Nice BABAR paper from 2006 using D* and D_s $^{(*)}$ recoils
 - × What can be improved : more stats, higher mass range

• Three-body B decays B→D*DK

- × Important work from BABAR and BELLE to cover all these decays
- × What can be improved : more stats, D** states, K* states

Systematic uncertainties table

6

Contribution	Value $\%$
Simulated sample size	4.7
Signal modeling	1.8
$D^{**}\tau\nu$ and $D^{**}_s\tau\nu$ feed-downs	2.7
$D_s^+ \to 3\pi X$ decay model	2.5
$B \to D^{*-}D^+_s X, B \to D^{*-}D^+X, B \to D^{*-}D^0X$ backgrounds	3.9
Combinatorial background	0.7
$B \to D^* 3\pi X$ background	2.8
Empty bins in templates	1.3
Efficiency ratio	3.9
Total internal uncertainty	8.9
$\mathcal{B}(B^0 \to D^* 3\pi)$ and $\mathcal{B}(B^0 \to D^* \mu \nu_\mu)$	4.5

D^*D_s +X events with reconstructed D_s in 3π

- Clear separation obtained of the D_s, D_s^{*} and D_s^{**} components
- Ratios ~1:2:2 (only 20% of D_s come directly from B)

D^* and D_s recoil study from BABAR

<u>Study of $B \rightarrow D(*)D(*)$ (s(J)) Decays and Measurement of D-s and DsJ(2460)</u> <u>Branching Fractions</u> Phys.Rev. D74 (2006) 031103

. Only 205 fb-1

• Does not cover the higher mass regions for D_s** and D**

universitė

universite

Specific measurements for LHCb-hadronic

10

• $D_s \rightarrow 3\pi X$ (probably better done at BES) but B-Factories could use a B° \rightarrow D $D_s(*)$ channel hadronic+SL Tag 2 M B° x0.10 D*x0.03 $D_s = 6k D_s$ tagged (could also use B+ \rightarrow D*° D_s)

 \circ [similar to was done in 2006 for D_s to phi pi]

• D⁺ \rightarrow 3 π X (probably better done at BES) but B-Factories could use B^o \rightarrow D⁺ π (or 3 π) (1.5Mx0.007)=10kD⁺

universitė

B^o→D* D_s (10% error right now) as a new normalization channel

LABORATOIRE DEL'ACCELERATEUR LINÉAIRE

LHCb semitauonic workshop LAL Nov 13-15 EHCb-PAPER-2017-017, arxiv 1708.08856

UNIVERSITE

Importance of the normalization channel $B^{\circ} \rightarrow D^{*}3\pi$

• Normalization mode as similar as possible to the signal to cancel production yield, BR uncertainties and systematics linked to trigger, PID, first selection cuts

BABAR measurement of BR($B^{o} \rightarrow D^{*}3\pi$) (Phys.Rev. D94 (2016), 091101)

In PDG 2014 BR(B°→D*3π) known only to 11% precision ☺
New BABAR analysis with full available statistics

 $BR(B^{\circ} \rightarrow D^{*} 3\pi) =$ 0,726±0.011±0.031)%

WA =(0,721±0.029)% PDG 2017

There is also an LHCb result of D*3 π /D* π not included in the PDG Phys. Rev. D87,092001 (2013)

Dominated by systematics errors Good precision of 4.0 % now with the new WA !! BELLE : Could you (re)measure this very precisely as well !!!

Source	Uncertainty (%)
Fit algorithm and peaking backgrounds	2.4
Track-finding	2.0
$\pi^+\pi^-\pi^+$ invariant-mass modeling	1.7
D^{*-} and \overline{D}^{0} decay branching fractions	1.3
$\Upsilon(4S) \rightarrow B^0 \overline{B}^0$ decay branching fraction	1.2
K ⁺ identification	1.1
Signal efficiency MC statistics	0.9
Sideband subtraction	0.7
$B\overline{B}$ counting	0.6
Total	4.3

Conclusion

- It will not be possible to benefit from the tantalizing statistical precision of upcoming round of semitauonic measurements (LHCb, BELLE-II) without dedicated efforts on complementary measurements
- I like to view this as a HEP-wide common effort to come to a final answer on the semitauonic NP hints
- Hottest topics on the list :
 - Two- and Three-body Double charm events
 - Inclusive D_s and D⁺ decays to 3 pions

