$B \rightarrow D^{(*)} \tau \nu$ angular analysis

Greg Ciezarek, on behalf of the LHCb collaboration

CERN

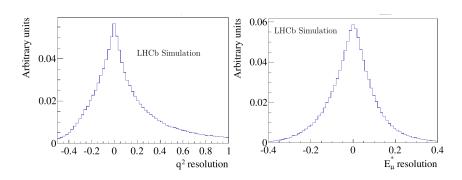
November 14, 2017

1. Introduction 2/15

Introduction

- Lots of information beyond branching fractions
 - $B\! o D^{(*)}\ell
 u$ matrix element fully described by 2 (4) kinematic variables
 - Tau polarisation
- For muonic $\mathcal{R}(D^*)$ analysis, we fit q^2 , muon energy, missing mass squared
 - ullet These partially describe matrix element ullet we already have some information
- At present we assume SM kinematic distributions for $\mathcal{R}(D^*)$
- What additional information should we try to fit?
- What physics should we try to measure?
- Disclaimer: talk is almost entirely opinions, hopes and speculation

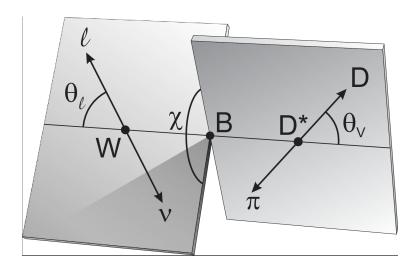
Reconstruction $(\tau \to \mu \nu \nu)$



- Take $(\gamma \beta_z)_B = (\gamma \beta_z)_{D^* \mu}$
- Have approximation for rest frame with $\sim 15-20\%$ precision
- Can use this to calculate angles

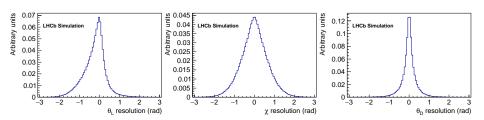
1. Introduction 4/15

Angular distributions



• What kind of resolution do we have on these angles?

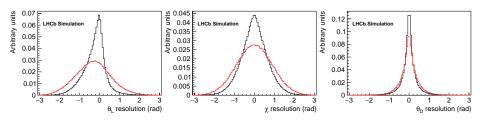
Angular resolutions for $B \to D^* \mu \nu$



• Before taus, first look at angular resolution for $B \to D^* \mu \nu$ simulated events

1. Introduction 6/15

Angular resolutions for $B \rightarrow D^* \tau \nu$



- Angular resolution for $B \to D^* \mu \nu$, $B \to D^* \tau \nu$ $(\tau \to \mu \nu \nu)$
- Tau decay results in loss of information
 - ullet $heta_\ell$ and χ degraded
 - $heta_D$ about the same $o D^{*+}(\Lambda_c)$ polarisation related observables maybe a good first target
- \bullet These resolutions aren't horrific \to we can make a measurement (with unknown sensitivity)
- ullet These resolutions aren't insignificant o we need to account for them...
- Unfolding?

1. Introduction 7/15

Unfolding isn't fundamentally sound

- Unfolding doesn't have good statistical properties
- See e.g R. D. Cousins, S.J. May, Y. Sun "Should unfolded histograms be used to test hypotheses?"
 - Spoilers: probably not
 - Even before biases introduced by regularisation
 - Going in the other direction is a fundamentally well defined procedure
- Describing the full space will require O(1000) bins \rightarrow not practical to unfold
- Uncertainty from background shapes difficult to reproduce accurately as a simple "background subtraction"
 - · Often just ignored, we really cannot do this

1. Introduction 8/15

Forward folding

- Don't deconvolute data to theory, convolute theory to data
 - Best convolution: MC simulation
- This is exactly what we are already doing!
 - · Can build on what we already have...
- Problem: model dependence need to choose functional form
 - We will explore all possibilities

1. Introduction 9/15

What can we do?

- Unfolding this seems a nightmare (as does background subtraction) \rightarrow we are unlikely to publish corrected q^2 / angular distributions for signal
- But we can fit the data
 - Templates we fit already include effects of resolution, acceptance ...
- How to fit the data?

Histogram expansion PDF

- What we want to do: reweight MC, reproduce histogram PDF
 - Event-by-event \rightarrow slow
- Weight for each event can be written as
 ∑[(Combination of fit coefficients) × (Stuff invariant in fit)]
 - (or expand it until it can be..)
 - Loop through events once, for each term generate a histogram
 - Adding up histograms, scaled by fit coefficients, exactly equivalent to fully reweighted histogram
- ullet Only need to sum up histograms o fast
 - Already using for muonic $\mathcal{R}(D^{(*)})$

1. Introduction 11/15

What to measure

- First need to see if the excess holds up!
- Afterwards:
 - Does measured value change allowing NP operators?
 - Can enhancement be accommodated by theory uncertainty?
 - Pure vector/axial/tensor/...?
 - Or a combination of operators?
 - Can we fit the full matrix element?

Scalar form factor

- Trying to measure (pseudo)scalar form factor directly from $B \to D^{(*)} \tau \nu$ doesn't seem so implausible
 - If no new (pseudo)scalar physics, and form factor agrees with prediction

 → model independent SM exclusion
 - Uncertainty from QED corrections?
- Testing SM only hypothesis o constrain other form factors from $B o D^{(*)} \mu \nu$
- Not yet sure when we become sensitive enough

1. Introduction 13/15

Tau polarisation?

- With $\tau \to \mu \nu \nu$:
 - Some sensitivity to polarisation, but probably can't disentangle from angular distribution?
- With $\tau \to \pi\pi\pi\nu$:
 - Combined $\pi\pi\pi$ momentum has little sensitivity to polarisation
 - ullet But some information in substructure o exploring this
 - Thesis of Laurent Duflot (LAL 93-09)
- Measurement of polarisation and angular information correlated
- Physics of polarisation and angular information correlated
- We should consider both together

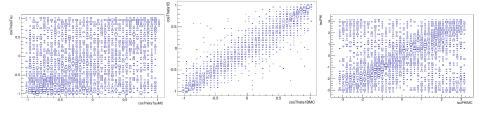
2. Conclusion 14/15

Conclusion

- We should explore what we can measure from the $B \to D^{(*)} \tau \nu$ and $B \to D^{(*)} \mu \nu$ kinematic distributions
- Unfolding and background subtracting looks like a nightmare
- Forward folding looks viable
 - At the cost of having to choose parameterisation(s) to fit with

2. Conclusion 15/15

Angular resolutions for $B \to D^* \tau \nu \ (\tau \to \pi \pi \pi \nu)$



- Situation similar for $\tau \to \pi\pi\pi\nu$ mode
- Different reconstruction method:
 - Can reconstruct kinematics up to quadratic ambiguities using B and au mass constraints + both vertex positions
 - Average over ambiguities
- Less information lost in tau decay, so Theta L a bit better?