Flavor Physics

Po-Yan Tseng

base on talks of Karim Trabelsi(KEK) and Andreas Crivellin(PSI)

Highlights from GRC, July 13th, Kavli IPMU

Belle(II), LHCb side by side

Belle (II)

$$e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else ⇒ clean events

$$\sigma_{b\overline{b}} \sim 1 \text{ nb} \Rightarrow 1 \text{ fb}^{-1} \text{ produces } 10^6 \text{ B}\overline{\text{B}}$$
 $\sigma_{b\overline{b}}/\sigma_{total} \sim 1/4$

(in the context of B anomalies) LHCb

production of B^+ , B^0 , B_s , B_c , Λ_b ...

but also a lot of other particles in the event

⇒ lower reconstruction efficiencies

 $\sigma_{b\bar{b}}$ much higher than at the Y(4S)

	√s [GeV]	σ _{ьδ} [nb]	$\sigma_{\rm b\bar{b}}$ / $\sigma_{\rm tot}$
HERA pA	42 GeV	~30	~10-6
Tevatron	2 TeV	5000	~10 ⁻³
LHC	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10-2

b b production cross-section $\sim 5 \times |$ Tevatron, $\sim 500,000 \times |$ BaBar/Belle!!

 $\sigma_{b\,\overline{b}}/\sigma_{\text{total}}$ much lower than at the $Y(4\,\text{S})$

⇒ lower trigger efficiencies

mean decay length $\beta \gamma c \tau \sim 200 \mu m$

B mesons live relativey long

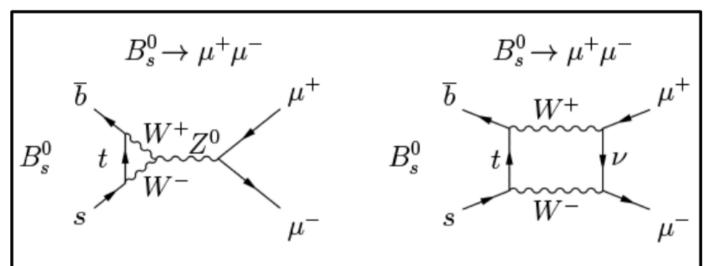
mean decay length $\beta \gamma c \tau \sim 7$ mm

data taking period(s)

 $[\text{run I: } 2010-2012] = 3 \text{ fb}^{-1},$

 $[\text{run II}: 2015 - 2018] = 2 \text{ fb}^{-1} \rightarrow 8 \text{ fb}^{-1}?$

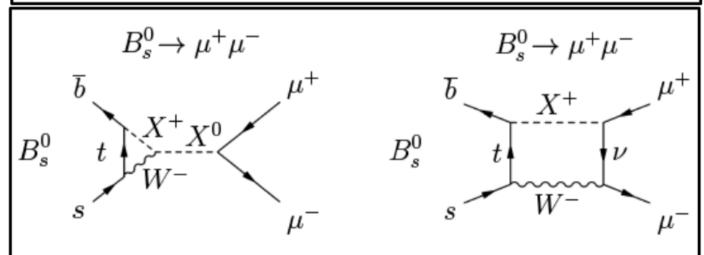
(near)|future


[Belle II from 2018] $\rightarrow 50 \text{ ab}^{-1}$

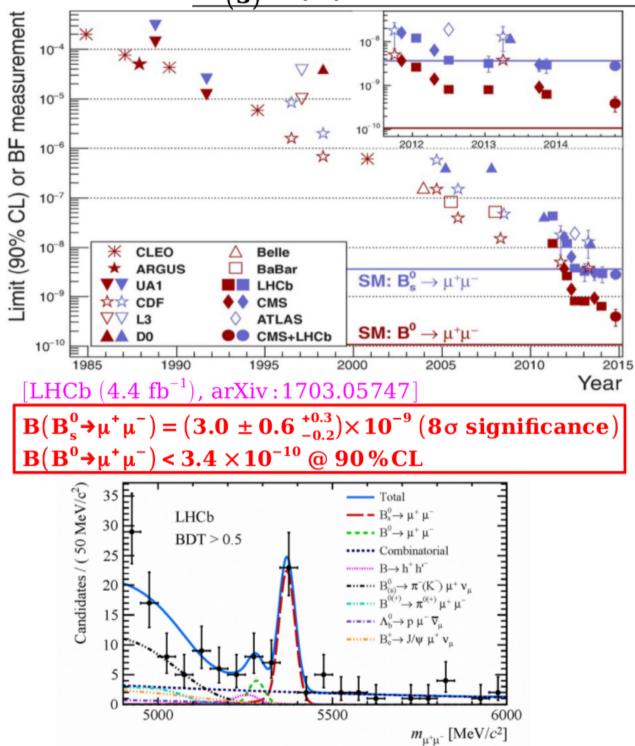
 $[1999-2010] = 1 \text{ ab}^{-1}$

[LHCb upgrade from 2020]

$B_{(s)} \rightarrow \mu \mu$: ultra rare processes...

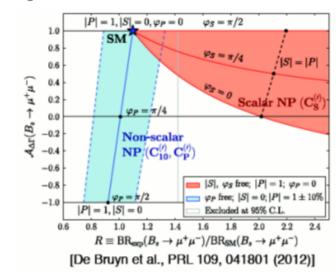

loop diagram + suppressed in SM + theoretically clean =
 an excellent place to look for new physics

higher-order FCNC allowed in SM

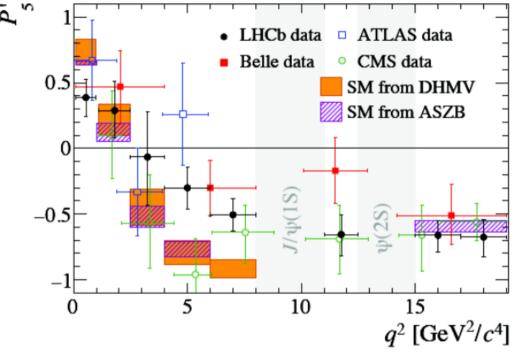

$$B(B_s \rightarrow \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$

 $B(B_d \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

[Bobeth et al, PRL 112 (2014) 101801]


same decay in theories extending the SM (some of NP scenarios may boost the B→μμ decay rates)

$B_{(s)} \rightarrow \mu \mu$: ultra rare processes...


''I'm too old for limits, I want to see signals'' (Francis Halzen, EPS15)

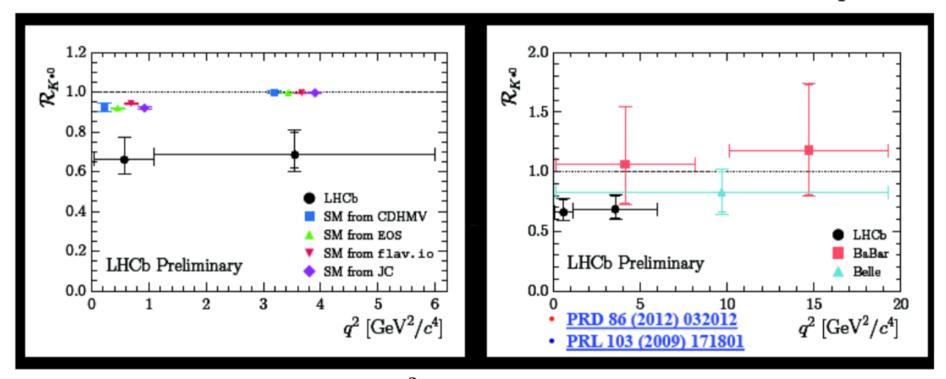
SM: heavy state decays to $\mu^+\mu^$ first lifetime measurement: $\tau(B_s \rightarrow \mu^+\mu^\pm) = 2.04 \pm 0.44 \pm 0.05 \ ps$

Angular analysis of $B_d^0 \rightarrow K^* l^+ l^-$ decays

• Form-factor less dependent observables $P_5' = \frac{S_5}{\sqrt{F_1(1-F_1)}}$

- \circ LHCb, Belle and ATLAS show deviations in $4 < q^2 < 8~GeV^2/c^4$
- CMS shows better agreement

not only use K^{*0} , also K^{*+} ($\rightarrow K_S \pi^+$, $K^+ \pi^0$ Belle, arXiv:1612.05014 1.5 SM from DHMV/LQCD All Modes 1.0 Electron Modes Muon Modes 0.5 0.0 -0.5 -1.05 15 20 $q^2 \, [{\rm GeV}^2/{\rm c}^2]$

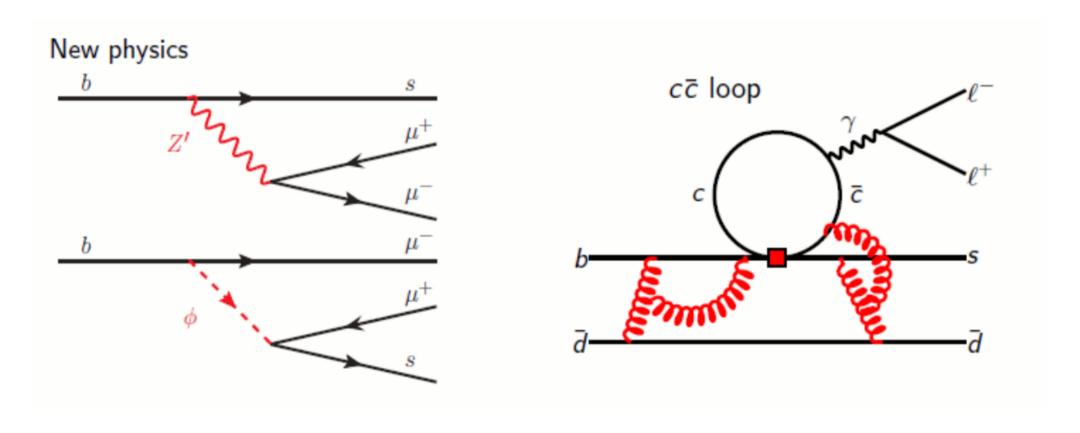

- \circ LFU test, measurement of $Q^i = P^i_{\mu} P^i_{e}$
- \circ 2.6 σ in P'₅ for the muons channels (1.3 σ for the electrons)

Precision of the measurement driven by the statistics of the electron samples

	B^0 $ ightarrow$	$K^{*0}\ell^+\ell^-$	$B^0 ightarrow K^{*0} J/\psi (ightarrow \ell^+ \ell^-)$		
	$low-q^2$	central- q^2	$B \to K J/\psi (\to \ell^+\ell^-)$		
$\mu^+\mu^-$	$285 {}^{+}_{-} {}^{18}_{18}$	353 + 21	$274416 ^{\ +\ 602}_{\ -\ 654}$		
e^+e^- (L0E)	55 ⁺ ⁹ ₈	67 + 10	43468 + 222		
e^+e^- (L0H)	13 + 5	19 + 6 5	$3388 {}^{+}_{-} {}^{62}_{61}$		
$e^{+}e^{-}$ (L0I)	21 + 5	$25 \stackrel{+}{} \stackrel{7}{}$	$11505 {}^{+}_{-} {}^{115}_{114}$		

$$\begin{split} &\text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4 \,, \\ &R_{K^{*0}} = 0.66 \, ^{+0.11}_{-0.07} \, (stat) \pm 0.03 \, (syst) \\ &\text{for } 1.1 < q^2 < 6.0 \, \text{GeV}^2/c^4 \,, \\ &R_{K^{*0}} = 0.69 \, ^{+0.11}_{-0.07} \, (stat) \pm 0.05 \, (syst) \end{split}$$

In total, about 90 and 110 $B^0 \rightarrow ee$ candidates at low- and central- q^2



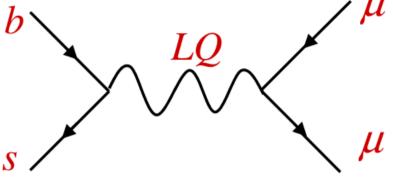
- \circ compatibility of result in the $low-q^2$ with respect to SM is of ${\bf 2.2-2.4}$ standard dev.
- compatibility of result in the central-q² with respect to SM is of 2.4-2.5 standard dev.

NP or hadronic effect?

Possible explanations for shift in C_9 :

- a potential new physics contribution C_9^{NP} enters amplitudes always with a charm-loop contribution $C_9^{c\bar{c}\,i}(q^2)$
- ⇒ spoiling an unambiguous interpretation of the fit result in terms of NP

NP e.g. Z', leptoquarks

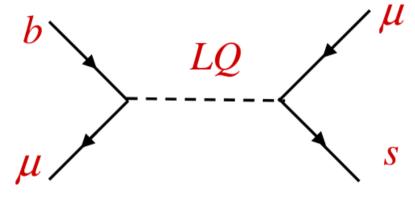

hadronic charm loop contributions

b→sμμ explenation

Z' see also talk of Peter Cox b

U. Haisch et al. 1308.1959, Buras et al. 1311.6729W. Altmannshofer et al. 1403.1269,AC. et al. 1501.00993,

Leptoquarks Talk of Svjetlana

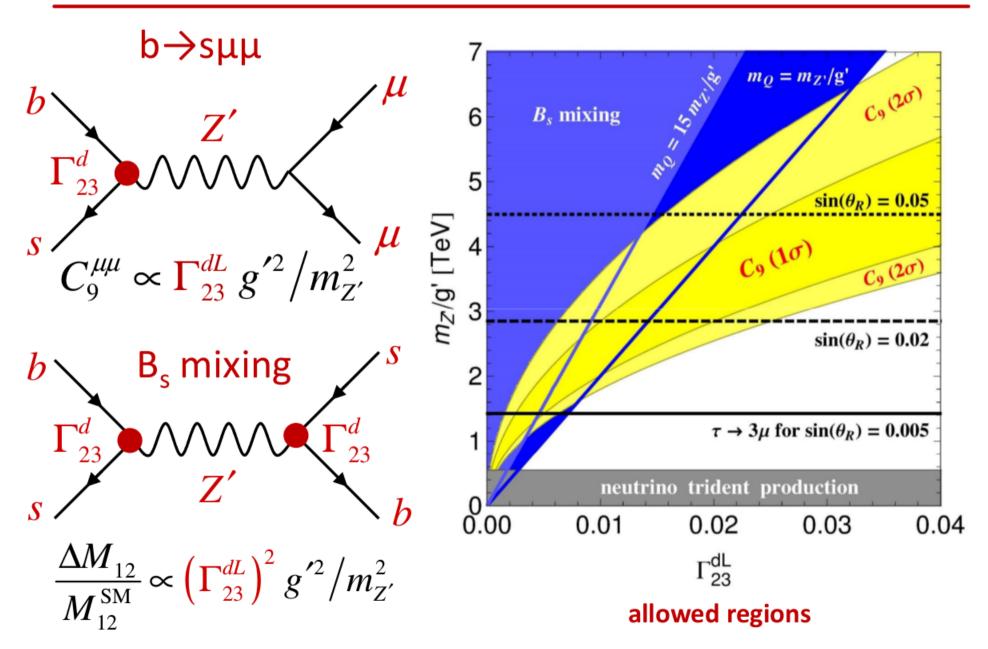

Gudrun Hiller, Martin Schmaltz. arXiv:1411.4773

B. Gripaios, M. Nardecchia, S.A. Renner.

arXiv:1412.1791

D. Bečirević, N. Košnik, O. Sumensari,

...

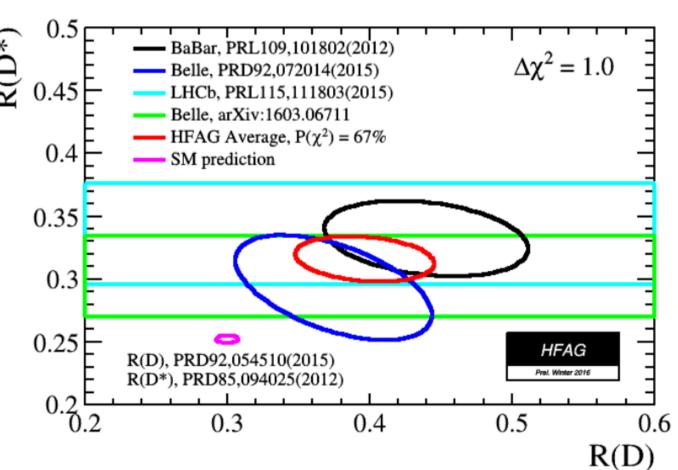

■ Loop effects (more soon)

B. Gripaios, M. Nardecchia, S. Renner, arXiv:1509.05020

Even high scale NP explanations possible

Z' solution for b→sµµ with VLQ

Solution with horizontal U(1) charges



- Avoid vector-like quarks by assigning charges to baryons as well
 - Same mechanism in the quark and lepton sector
- \blacksquare L_{μ}-L_{τ} in lepton sector
 - Good symmetry for the PMNS matrix
 - Effect in $C_9^{\mu\mu}$ but not C_9^{ee}
- First two quark generations must have the same charges because the large Cabibbo angle would lead to huge effect in Kaon mixing
- Anomaly freedom

Summary for $B \rightarrow D^{(*)} \tau \nu$

in 2016

$$\Rightarrow R(D^{(*)}) = \frac{BF(B \rightarrow D^{(*)} \tau \nu_{\tau})}{BF(B \rightarrow D^{(*)} l \nu_{l})}$$

BaBar

$$R(D) = 0.440 \pm 0.058 \pm 0.042$$

 $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

Belle

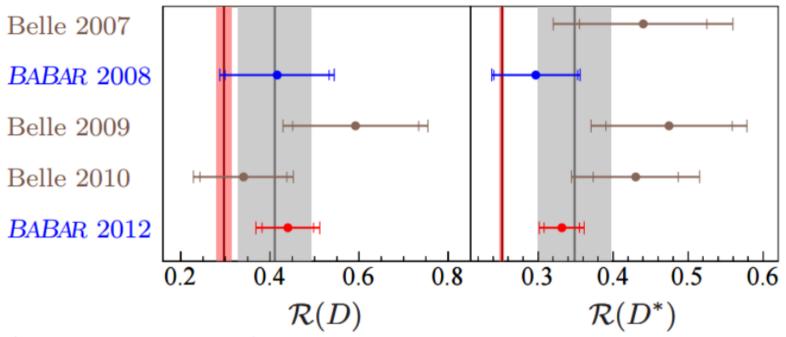
$$R(D) = 0.375 \pm 0.064 \pm 0.026$$

 $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

$$R(D^*) = 0.302 \pm 0.030 \pm 0.011$$

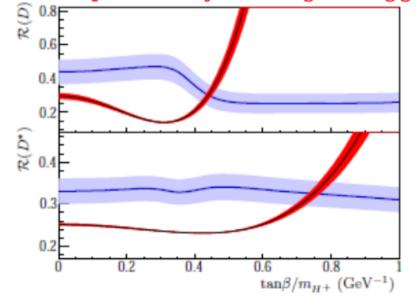
LHCb

$$R(D^*) = 0.336 \pm 0.027 \pm 0.030$$


average

$$R(D) = 0.397 \pm 0.040 \pm 0.028$$

 $R(D^*) = 0.316 \pm 0.016 \pm 0.010$
difference with SM predictions
is at **4.0** σ level


$$\mathbf{B} \to \mathbf{D}^{(*)} \tau \nu$$

$$R(D^{(*)}) = \frac{B(B \rightarrow D^{(*)} \tau \nu)}{B(B \rightarrow D^{(*)} l \nu)}$$

Babar and Belle measurements hint to deviation from SM

BaBar (arXiv:1303.0571) observes a 3.4 σ excess over SM expectation ''This excess cannot be explained by a charged Higgs boson in the 2HDM type II ''

$\mathbf{B} \rightarrow \mathbf{D}^* \tau \nu \text{ at Belle}$

 $D^{(*)}$ leptonic with hadronic tagging, arXiv:1507.03233 D^{*} with leptonic tagging, arXiv:1607.07923

- New result using:
- ∘ hadronic decays of $\tau^- \rightarrow \pi^- \nu_{\tau}$, $\rho^- \nu_{\tau}$
- hadronic tagging

 $\tau^- \to \pi^- \nu_\tau$, $\rho^- \nu_\tau$ are good polarimeter for τ polarization

$$P_{ au}(D^*) = rac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$
 $\Gamma^{+(-)}$ for right-(left-)handed au

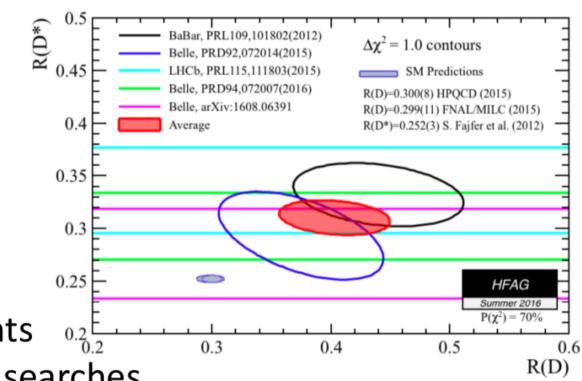
$$P_{\tau}(D^*)_{\text{SM}} = -0.497 \pm 0.013$$

M. Tanaka and R. Watanabe,
Phys. Rev. D 87, 034028 (2013)

S = 1 S = 0 \bar{v}_{τ}

 θ_{hel} = angle of τ daughter meson momentu with respect to direction opposite to momentum of $\tau \nu$ system in τ rest frame

au polarization is a variable sensitive to NP


 $P_{\tau}(D^*)$ is modified $\frac{1}{\Gamma(D^*)} \frac{d\Gamma(D^*)}{d\cos\theta_{\text{hel}}} = \frac{1}{2} [1\alpha P_{\tau}(D^*)\cos\theta_{\text{hel}}]$

[Belle, arXiv:1612.00529] Sum of all samples $\bar{B} \rightarrow D^{**}l^-\bar{\nu}_{i}$ + had. B Event / (0.05 GeV) <u>21000</u> Signal events ■ Fake D* etc. Event / Data 800 60 600 50 400 30 $R(D^*) = 0.270 \pm 0.035 ^{+0.028}_{-0.025}$ 20 200 $P_{\tau}(D^*) = -0.38 \pm 0.51 ^{+0.21}_{-0.16}$ 10 0 E_{ECL} (GeV) $cos\theta_{be}$

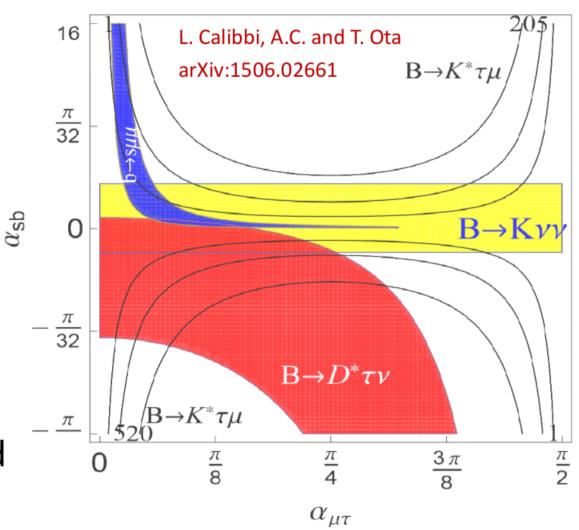
$R(D) \& R(D^*)$

- Charged scalars
 - Problems with q² distributions and B_c lifetime
- W'
 - Strong constraints 0.2 Line from direct LHC searches

- Leptoquark see talk of Svjetlana
 - Strong signals in qq→ττ searches

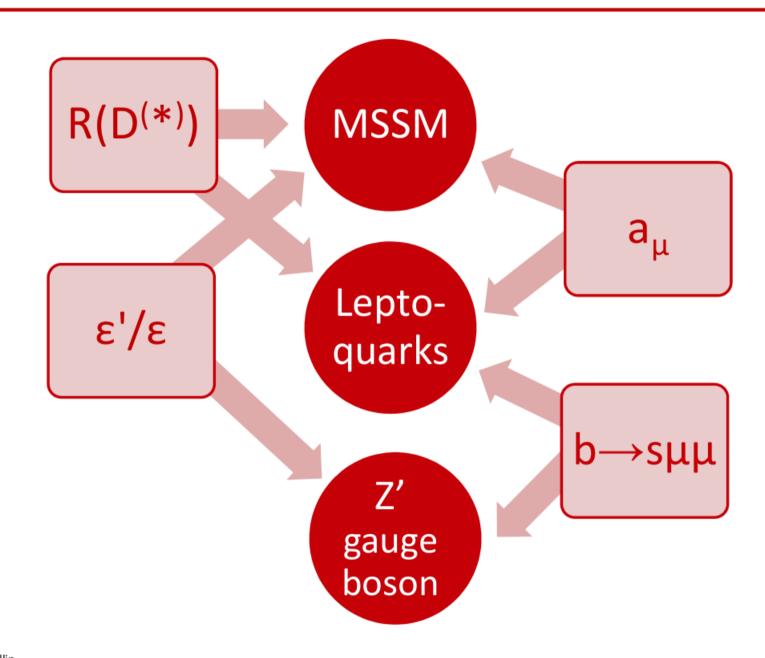
Faroughy et al. arXiv:1609.07138

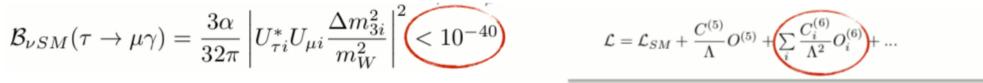
Explanation difficult


Leptoquarks in b→sμμ and b→cτν

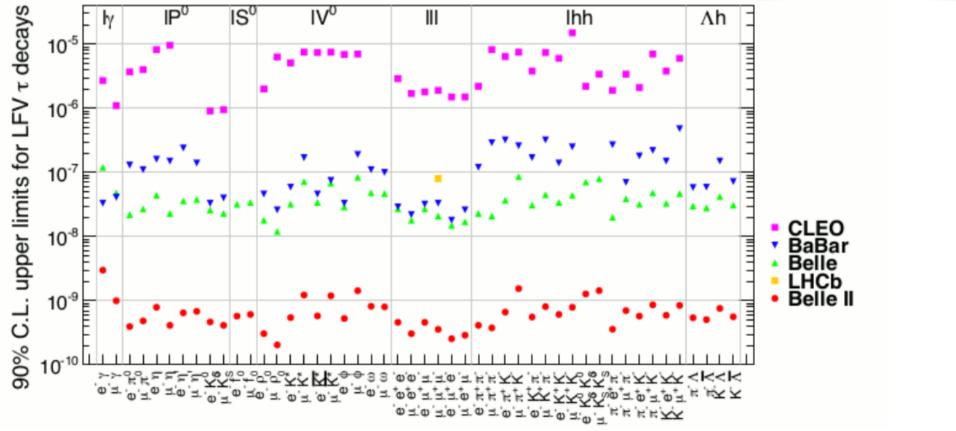
Third generation couplings

 $egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$


Misalignment between interaction and mass basis


Simultaneous explanation possible

Implications for New Particles



cLFV: beyond the Standard Model

					$\tau \to 3 \mu$	$\tau \to \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
Model	Reference	т→µү	т→µµµ	4-lepton O _{S,V}	✓	-	-	-	-	_
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10-14	dipole O _D	✓	✓	✓	✓	-	-
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10-9	10-10	O _V ←	1	-	✓ (I=1)	✓(I=0,1)	-	-
	, , , , , , , , , , , , , , , , , , , ,			O ^q ←	- 1	-	✓ (I=0)	✓ (I=0,1)	_	-
Non-universal Z'	PLB 547 (2002) 252	10-9	10-8	lepton-gluon →O _{GG}	-	-	✓	✓	-	-
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10	O ^q ←		-	-	-	✓ (I=1)	✓ (I=0)
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10-9	O ^q _P ←	-	-	-	-	✓ (I=1)	✓ (I=0)
				O _G	_	_	-	_	_	/
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7		Lepton	-quark		Celis, C	rigliano, Pa	ssemar (2014)
Ø	F L. 100	100	17.40	lu lu	Ibi		A la			

Summary

- There are anomalies among the B-meson. They can be checked by Belle-II in near future.
- Bs-->dimuon and b-->s+dimuon are relevant.
- NP simultaneously explains some anomalies and gives predictions. These can be used as model selection.