Neutrino

Experimental approaches and Asian experiments

Accelerator neutrino:

T2K, T2K-II, T2HK (Japan), T2HKK (+Korea)

- <u>Reactor neutrino:</u> RENO (Korea), Daya Bay, JUNO (China)
- <u>Atmospheric neutrino:</u>
 <u>Super-K, SK-Gd, Hyper-K (Japan), INO (India)</u>
- Not covered here: Astro. ν (Solar, SN, ...), KamLAND

Kuze

T2K results on δ_{CP}

Kuze

----- 68%CL (-2 Δ ln L = 2.3) _ ---- 90\%CL (-2 Δ ln L = 4.61)

★ Best-fit

- Compare $\nu_{\mu} \rightarrow \nu_{e}$ appearance between ν and anti- ν
- Using reactor θ_{13} constraint, $\delta = 0 \text{ or } \pi \text{ excluded at } 90\% \text{ C.L.}$

Kuze

Hyper-Kamiokande

Kuze

T2HKK (Tokai 2 HK & Korea)

- Idea to build a 2nd tank in Korea ("lower" Off-Axis beam reaches Earth surface in Korea)
- L~1100km \rightarrow large matter effect \rightarrow Mass Hierarchy sensitivity
- > 5σ for any δ_{CP} value
- Also δ_{CP} precision improves

T2HKK White Paper 1611.06118

PLB 637(2006)266 PRD 76(2007)093002

DUNE

Luk

- A long-baseline neutrino experiment designed for studying
 - CP violation in neutrino oscillation
 - Study v_e appearance
 - Neutrino mass-hierarchy problem
 - Precise measurement of mixing angle θ_{23} and mass splitting Δm_{32}^2
 - Nucleon decay
 - Other physics

DUNE: Scientific Reach

Mass Hierarchy

CP Violation 10_C DUNE Sensitivity 7 years (staged) Normal Ordering 9 10 years (staged) $sln^2 2\theta_{13} = 0.085 \pm 0.003$ θ_{23} : NuFit 2016 (90% C.L. range) $sln^2 \theta_{23} = 0.441 \pm 0.042$ 10 yrs $\langle \Delta \chi^2$ 5σ II yrs 3σ 0 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 -1 δ_{CP}/π 12 DUNE Sensitivity (Staged) δ_{CP} = -π/2 Normal Ordering 50% of δ_{CP} values $sin^2 2\theta_{13} = 0.085 \pm 0.003$ 75% of δ_{CP} values Nominal Analysis $10 - \sin^2 \theta_{23} = 0.441 \pm 0.042$ ----- θ₁₃ & θ₂₃ unconstrained 7 years $\sqrt{\Delta \chi^2}$ 4 years Ш 10 12 14 6 8

Years

Luk⁸

Moderate preference on NH

Kuze

• SK Atm- ν + fixed θ_{13}

Daya Bay: Most Precise θ_{13}

$\sin^2 2\theta_{13} = 0.0841 \pm 0.0027 \pm 0.0019$

Luk

• Ultimate precision ≈ 0.0025 , the best in the foreseeable future.

 $\Delta m_{32}^2 = (+2.45 \pm 0.06 \pm 0.06) \times 10^{-3} \text{ eV}^2 \text{ (NH)}$ $\Delta m_{32}^2 = (-2.56 \pm 0.06 \pm 0.06) \times 10^{-3} \text{ eV}^2 \text{ (IH)}$

- Final precision $\approx 0.06 \times 10^{-3} \,\mathrm{eV^2}$
- Agreement between the v_e and v_{μ} experiments strongly supports 3-flavor mixing.

Daya Bay: Reactor Antineutrino

Luk

• Precise flux

- consistent with previous results.
- disagreed with Huber's model at 3.1σ .
- yield from ²³⁵U may be the key contributors to the reactor antineutrino anomaly.
- Most precise energy spectrum
 - Observed excess of events with \overline{v}_e energy between 5 and 7 MeV.

JUNO for Mass Hierarchy

The JUNO Experiment

Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013. ~ 300 M\$.

- 20 kton LS detector
 - **3% energy resolution**
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino
 for Mass hierarchy and
 precision measurement of
 oscillation parameters
 - ➡ Supernovae neutrino
 - ➡ Geoneutrino
 - ⇒ Solar neutrino
 - ➡ Atmospheric neutrino
 - ➡ Exotic searches

J. Cao, NuTel 2015

Kuze

Near-future of SK: SK-Gd

• Main motivation: Supernova relic ν • Also reduces p-decay BG

SK-Gd

Discovery of relic SN neutrinos is expected by O(1) sensitivity improvement
0.1% Gd loading to tag
ve+p→e+n, Gd+n→Gd+γs

R&D in test tank and water system construction going on
Start SK-Gd in a few yrs

M. Shiozawa, NuTel 2017

Model Tv	10-16MeV Eve/10yrs	16-28MeV Eve/10yrs	Total (10-28MeV)	Significance 2 energy bin
8 MeV	11.3	19.9	31.2	5.3σ
6 MeV	11.3	13.5	24.8	4.3σ
4 MeV	7.7	4.8	12.5	2.5σ
1987a	5.1	6.8	11.9	2.1σ
BG	10	24	34	

Model: Phys. Rev. D 79 (2009) 083013.

Kuze

Fermilab Neutrino Experiments

Luk

Booster v beam

MicroBooNE, SBN program

Booster proton energy: 8 GeV

NuMI v beam NOvA, MINERvA, MINOS+

5

Main Injector proton energy: 120 GeV

DUNE v beam DUNE

R. Rameika

NOvA: v_µ **Disappearance**

Luk²

Short-Baseline Neutrino (SBN) Program

- All three detectors are liquid-argon TPCs
 - ICARUS and MicroBooNE exist
 - Build a DUNE-style detector: SBND

Sensitivities of the SBN Program

- Appearance and disappearance measurements with the same detectors
- SBN has the potential to cover the entire range of interest

Daya Bay: Search For Light Sterile Neutrino

Ground-based telescopes

All of them employ
Superconducting sensor array ~1000pix

Difference

- Target angular scale
 (Primordial or lensing)
 => scan area
 - => telescope size

Future experiments and expected results

If CMB exp. observe the high mass(>0.1eV) neutrino Neutrino less double beta decay exp. Observe at same mass -> Majorana ! Reject that mass point -> Dirac !! CMB cannot observe -> Normal !!!

CMB-S4 (U.S.)

- 2020 ~
- Telescope array
 - Combination of existing experiments
 - 100,000 sensors !
 - Expected sensitivity
 - $\sigma \left(\Sigma m_{\nu} \right) = 16 \text{ meV}$ $\sigma \left(N_{eff} \right) = 0.020$