Baryon Asymmetry

Overview			Edit PDF iCal
Timetable	Baryon	Asymmetry	
Contribution List	Place Location: T	The Hong Kong University of Science and Technology	
My Conference	Address: H	ong Kong, China	
Registration	Files		Edit files
Registration Form	Date: 28 .	Jun 19:30 - 21:30	
	Description Discussion Kingdom)	on Leader: Pasquale Di Bari (University of Southampton, United	
	Timetable	e Contribution List	
	Wed 2	28/06	
		Print	Full screen Filter
	19:00		
		Electroweak Baryogenesis	Thomas KONSTANDIN
		The Hong Kong University of Science and Technology	19:30 - 19:45
	20:00	Unifying Inflation with the Axion, Dark Matter, Baryogenesis and the S Mechanism	Seesaw Carlos TAMARIT
		Baryogenesis from Right-Handed Neutrino Oscillations	Takehiko ASAKA
		The Hong Kong University of Science and Technology	20:10 - 20:25
		Leptogenesis from Realistic Models	Chee Sheng FONG
		The Hong Kong University of Science and Technology	20:30 - 20:45
		Models on the Origin of Ordinary and Dark Matter	Peihona GU
	21:00	The Hong Kong University of Science and Technology	20:50 - 21:05
		The nong rong entrenety of exercise and realizing y	20100 21100

Explain baryon asymmetry of the universe too!

Restrictions from neutrino masses

• CP violation is tied to neutrino mass scale

Caveats

 $M_i \sim M_j$

• "Heavier states" not much heavier → *resonant enhancement*

Leptogenesis (realistic models) - C. S. Fong

Resonant leptogenesis

[Pilaftsis (hep-ph/9707235)] [Pilaftsis & Underwood (hep-ph/0309342)]

- The right-handed neutrinos are guasi-degenerate to enhance the CP violation from self energy corrections
- Can be probed at LHC & CLFV [Bray, Lee & Pilaftsis (hep-ph/0702294)]
- Quasi-degeneracy $M_2 M_1 = \mu \ll M_{1,2} \approx M$ due to

 - Approximate family symmetry (ok)
 Soft SUSY breaking terms (ok)
 [Grossman et al. (hep-ph/0307081)]
 [D' Ambrosio et al. (hep-ph/0308031)]
 [Review (hep-ph/1107.5312)]
 - Approximate lepton number (difficult)

Difficult because mass degeneracy is tied to CP violation!

$$M_2 - M_1 = \mu \qquad \qquad |\epsilon| \propto \mu$$

Baryogenesis via neutrino oscillation

- Oscillation of RH neutrinos can be a source of BAU Akhmedov, Rubakov, Smirnov ('98) / TA, Shaposhnikov ('05)
 - Oscillation starts at $T_{osc} \simeq (M_0 M_N \Delta M)^{1/3}$

Medium effects

NÍL

- **\square** Asymmetries are generated since evolution rates of L_{α} and
 - $\overline{L_{\alpha}}$ are different due to CPV

Takehiko Asaka (Niigata Univ.)

2017/06/28

Baryogenesis region

2017/06/28

Sensitivities by future searches

Normal Hierarchy

Takehiko Asaka (Niigata Univ.)

2017/06/28

First-order phase transition

The free energy (as a function of the Higgs vev) decides the nature of the phase transition:

What are the challenges?

Pre LHC EWBG

Before LHC, the main focus was on supersymmetric models.

Strong first-order electroweak phase transition from light stops

 $m_{\tilde{t}} \lesssim m_t$

NMSSM

[Menon, Morrisey, Wagner '04] [Huber, TK, Prokopec, Schmidt '06] U'(1) MSSM [Kang, Langacker, Li, Liu '04]

CP violation From the chargino sector

 $m_{\chi^{\pm}} < 200 \,\mathrm{GeV}$

problematic, also because of EDMs

EWBG in the LHC era

0.5

0.0

0.0

0.5

After LHC run II, the focus in EWBG is more on minimal models:

Strong first-order electroweak phase transition from extended scalar sector

Two Higgs doublet model

CP violation from the Higgs sector

Singlet extension with a low cutoff

CP violation from the dim-5 top-singlet operators new dof low cutoff in principle testable

0.0

Composite Higgs models

The Higgs could be a Pseudo-Goldstone boson of a broken global symmetry

QCD:
$$\frac{SU(2)_L \times SU(2)_R}{SU(2)_V} \to 3\pi$$

The broken symmetry will determine the light degrees of freedom and their quantum numbers

$$\frac{SO(5)}{SO(4)} \to H$$

but also

$$\frac{SO(6)}{SO(5)} \to H + S$$

$$\frac{SO(6)}{SO(4) \times SO(2)} \to 2H$$

[Kaplan, Georgi '84]

Ingredients

Two ingredients of baryogenesis are missing in the Standard Model. These are provided in models that have an additional singlet in the low energy effective description

Strong first-order electroweak phase transition

CP violation from dimension-five operators

$$\mathcal{L} \ni y_t \bar{\psi}_Q H \psi_t + \frac{\tilde{y}_t}{f} S \bar{\psi}_Q H \psi_t + h.c.$$
$$\Im(y_t \tilde{y}_t^*) \neq 0$$

Baryogenesis

CPV is mostly present during the phase transition and does not require sizable mixing the broken phase \rightarrow nightmare scenario

Dark Matter

Contribution List

My Conference

Registration

Registration Form

Place Location: The Hong Kong University of Science and Technology Address: Hong Kong, China

Files

Date: 29 Jun 09:00 - 12:35

Description

Discussion Leader: Jianglai Liu (Shanghai Jiao Tong University, China)

Timetable | Contribution List

Thu 2	9/06			
		Print	Full screen	Filter
09:00	Particle Theories of Dark Matter			Patrick FOX
	The Hong Kong University of Science and Technology			09:00 - 09:25
	Dark Matter Direct Detection Experiment		И	olfgang RAU
	The Hong Kong University of Science and Technology			09:30 - 09:55
10:00	Dark Matter Searches in Space			Jin CHANG
	The Hong Kong University of Science and Technology			10:00 - 10:25

Edit files

	•	
	Experimental Searches of Axions	Yannis SEMERTZIDIS
11:00	The Hong Kong University of Science and Technology	10:50 - 11:15
	Dark Matter Searches in Colliders	Ning ZHOU
	The Hong Kong University of Science and Technology	11:20 - 11:45
	Recent Results from the XENON1T Experiment	Shingo KAZAMA
12:00	The Hong Kong University of Science and Technology	11:50 - 12:05
	Diversity Problem of Galaxies and Self-Interacting Dark Matter	Hai-Bo YU
	The Hong Kong University of Science and Technology	12:10 - 12:25

Fox (USA)

Particle theories

[Feng-US Cosmic Visions White papers]

WIMP

• DM interacts through weak (or weak scale) couplings

Fox (USA)

Lee-Weinberg and Unitarity constrain mass range

SD

Usually consider a thermal relic

sub-keV DM

- Very light DM is bosonic
- Heavier than $10^{-22} \,\mathrm{eV}$
- More appropriately thought of as semiclassical wave, large n
- Or, absorption of DM, linear coupling to matter

[US Cosmic Visions White papers]

Fox (USA)

Hidden sector DM—thermal relics

Leads to interesting changes in cosmology

DM-SM elastic scatter

Crossing the Inelastic Frontier—Xenon100

Fox (USA)

Direct Detection Triangle

DM Direct Detection - W Rau - GRC Particle Physics

After LHC

11	m	P	ta	h	P
		\sim	<u>u</u>		

Contribution List

My Conference

Registration

Registration Form

Physics After LHC

Place Location: The Hong Kong University of Science and Technology Address: Hong Kong, China

Files

Date: 28 Jun 11:00 - 14:30

Description Discussion Leader: Michelangelo Mangano (CERN, Switzerland)

Timetable | Contribution List

Edit files

13:00	Detectors for Future Collider Experiments	Lucie LINSSEN
	The Hong Kong University of Science and Technology	12:55 - 13:15
	Searches for Unconventional Signatures at Future Accelerators	David CURTIN
	The Hong Kong University of Science and Technology	13:20 - 13:40
	Future Experiments to Complement High-E Colliders in the Search and Study of BSM	Eder IZAGUIRRE
14:00	The Hong Kong University of Science and Technology	13:45 - 14:05

Ideology

HEP before the F.C.

Particle physics is not validation anymore, rather it is exploration of unknown territories *

* Not necessarily a bad thing. Columbus left for his trip just because he had no idea of where he was going !!

Dark Matter

100 TeV can probe WIMP DM unaccessible to current and future Direct Detection

Intensity/Accuracy Frontier @ 100 TeV

Huge "low-mass" rate allows to produce Dark Sec. part. ...

Energy and Accuracy Frontier @ 100 TeV

Enhanced indirect NP effects in high mass tails

No need of extreme accuracy for indirect NP probe

EWPT @ hadron colliders: (W and Y oblique par.s)

[arXiv:1609.08157]

studies of high-energy e⁺e⁻ colliders

Circular Electron Positron Collider (**CEPC**), China e⁺e⁻, Vs: 90-240 GeV; SPPC pp, Circumference: 100 km

Google earth

vy, NGA, GEBCO .com aMetrics

高能用

抚宁县

International Linear Collider (ILC): Japan (Kitakami) e⁺e⁻, √s: 250 – 500 GeV (1 TeV) Length: 17 km, 31 km (50 km)

Future Circular Collider (**FCC-ee**): CERN e⁺e⁻, Vs: 90 - 350 GeV; FCC-hh pp Circumference: 97.75 km

Compact Linear Collider (CLIC): CERI e⁺e⁻, √s: 380 GeV, 1.5 TeV, 3 TeV Length: 11 km, 29 km , 50 km

Lucie Linssen, June 28th, 2016

studies of high-energy pp colliders

ER

Circumference: 97.75 km

High-Energy LHC (HE-LHC): CERN pp Vs ~27 TeV Circumference: 27 km

Lucie Linssen, June 28th, 2016

LHC ring: 27 km circumference

studies of high-energy e⁺e⁻ colliders

Circular Electron Positron Collider (**CEPC**), China e⁺e⁻, Vs: 90-240 GeV; SPPC pp, Circumference: 100 km

Google earth

vy, NGA, GEBCO .com aMetrics

高能用

抚宁县

International Linear Collider (ILC): Japan (Kitakami) e⁺e⁻, √s: 250 – 500 GeV (1 TeV) Length: 17 km, 31 km (50 km)

Future Circular Collider (**FCC-ee**): CERN e⁺e⁻, Vs: 90 - 350 GeV; FCC-hh pp Circumference: 97.75 km

Compact Linear Collider (CLIC): CERI e⁺e⁻, √s: 380 GeV, 1.5 TeV, 3 TeV Length: 11 km, 29 km , 50 km

Lucie Linssen, June 28th, 2016

studies of high-energy pp colliders

ER

Circumference: 97.75 km

High-Energy LHC (HE-LHC): CERN pp Vs ~27 TeV Circumference: 27 km

Lucie Linssen, June 28th, 2016

LHC ring: 27 km circumference

linear e⁺e⁻ accelerator parameters

	 	LC	\	CLIC	
Parameter	250 GeV (next stage)	500 GeV	380 GeV	1.5 TeV	3 TeV
Luminosity \mathscr{L} (10 ³⁴ cm ⁻² sec ⁻¹)	1.5	1.8	1.5	3.7	5.9
\mathscr{L} above 99% of Vs (10 ³⁴ cm ⁻² sec ⁻¹)	1.3	1.0	0.9	1.4	2.0
Accelerator gradient (MV/m)	31.5	31.5	72	72/100	72/100
Site length (km)	~17	31	11.4	29	50
Repetition frequency (Hz)	10	5	50	50	50
Bunch separation (ns)	554	554	0.5	0.5	0.5
Number of bunches per train	1312	1312	352	312	312
Beam size at IP $\sigma_x^{}/\sigma_y^{}$ (nm)	729/7.7	474/5.9	150/2.9	~60/1.5	~40/1
Beam size at IP σ_z (μ m)	300	300	70	44	44

circular e⁺e⁻ collider parameters

FCC-ee parameters:

parameter	Z	W	H (ZH)	ttbar
√s [GeV]	91	160	240	350
Beam current [mA]	1400	147	29	6.4
Number of bunches	71000	7500	740	62
Bunch intensity [10 ¹¹]	0.4	0.4	0.8	2.1
Bunch spacing [ns]	2.5 / 5.0	40	400	5000
SR energy loss / turn [GeV]	0.036	0.34	1.71	7.72
Total RF voltage [GV]	0.25	0.8	3.0	9.5
Long. damping time [turns]	1280	235	70	23
Bunch length with SR & BS [mm]	4.1	2.3	2.2	2.9
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	130	16	5	1.4

Note on CEPC:

- pre-CDR 2015, 54 km ring
- CDR expected in 2017, 100 km ring → parameters @ H (HZ), W, Z under study (see next slide)

CĒRN

FCC-hh, HE-LHC, HL-LHC, LHC parameters

ſ	Ne	w tunnel	LI		
parameter	FCC-hh		HE-LHC	HL-LHC	LHC
√s [TeV]		100	27	14	14
Dipole field [T]		16	16	8.33	8.33
Circumference [km]		97.75	26.7	26.7	26.7
Beam current [A]	0.5		1.12	1.12	0.58
Bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.15
Bunch spacing [ns]	25	25 (5)	25 (5)	25	25
Synchr. rad. power / ring [kW]	2400		101	7.3	3.6
SR power / length [W/m/ap.]	28.4		4.6	0.33	0.17
Long. emit. damping time [h]	0.54		1.8	12.9	12.9
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	25	5	1
events/bunch crossing	170	~1000 (200)	~800 (160)	135	27

calorimetry and PFA

Jet energy resolution + background suppression for optimal detector desi

=> => fine-grained calorimetry + Particle Flow Analysis (PFA)

What is PFA?

Typical jet composition: 60% charged particles 30% photons 10% neutral hadrons

V

Always use the best info you have: 60% => tracker 🙂 🙂 30% => ECAL 🙂 10% => HCAL 🙁

Hardware + software !

e⁺e⁻ → tτ̄H → WbWbH → qq̄b τνb bb CLIC 1.4 TeV

 Highly granular calorimetry + precise hit timing
 ✓
 Very effective in suppressing backgrounds for fully reconstructed particles

General trend for **e⁺e⁻** and **pp** options (e.g. CMS endcap calorimetry for HL-LHC)

HE-LHC

Use the FCC-hh magnet technology for a proton-proton collider in the LHC tunnel

- **vs=27 TeV** (=14 TeV * 16 T / 8.33 T)
- Luminosity 4 times higher than HL-LHC (1/E²)
- Constraint on external diameter of magnet cryostat, 1.2 m, for LHC tunnel compatibility

Key ingredients:

- FCC-hh magnet technology
- FCC-hh vacuum system
- HL-LHC crab waist scheme
- HL-LHC electron lens
- HL-LHC/LIU beam parameters (25 ns bunch structure, 5 ns option)

Compared to ATLAS / CMS, the forward calorimeters are moved far out in order to reduce radiation load and increase granularity.

 \rightarrow A large shielding (brown) needed to stop neutrons from escaping to cavern and muon syst.