

Storage at CERN

Hervé Rousseau — IT Department hroussea@cern.ch

Introduction

Storage for physics

Infrastructure storage

Unified building blocks

Storage node

- · Compute node
- 10Gbit/s network interface
- · SAS expander

Storage array

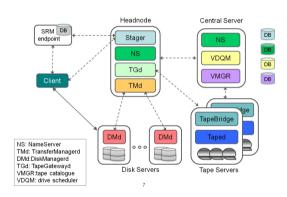
- · Dummy SAS array
- · 24x 6TB drives

Services Portfolio

Introduction

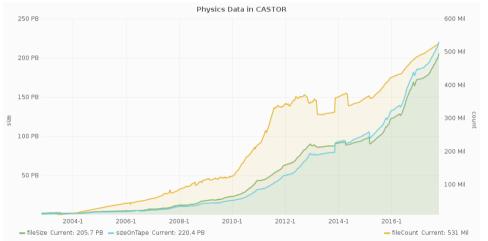
Storage for physics

Infrastructure storage

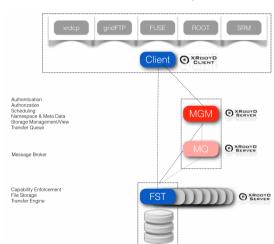

Castor

Tape-backed storage system

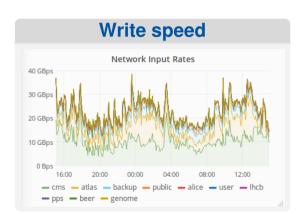
- · Home-made HSM^a system
- Users write data to disk
- · Which gets migrated to tape

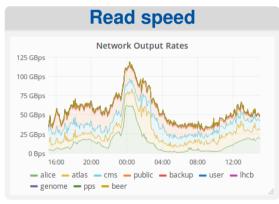

^aHierarchical storage management

Castor


EOS

Aggregated numbers


- $\cdot \sim$ 1500 nodes
- $\cdot \sim$ 55k drives
- $\cdot \sim$ 220PB raw capacity


Spread over 6 instances

EOS

CERNBox — SWAN

CERNBox

- File sync and sharing
- Office tools integration
- Integration with ROOT^a

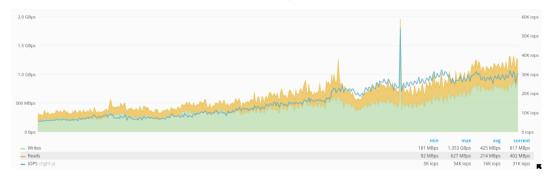
SWAN

- · Jupyter based notebooks^a
- · Python, ROOT, R, Spark
- · Nice CERNBox integration

^ahttp://cern.ch/swan

ahttps://root.cern.ch

Introduction


Storage for physics

Infrastructure storage

Ceph

- · Openstack is Ceph's killer app: 4x usage in 2 years
- Not a single byte lost or corrupted

Ceph: NFS on RBD

Replace NetApps with VMs

- $\cdot \sim$ 60TB across 30 servers
- · Openstack VM + RBD vol.
- · CentOS7 with ZFS
- · Not highly-available, but...
- · Cheap (thin-provisioning)
- · Resizable

Ceph: NFS on RBD

Replace NetApps with VMs

- $\cdot \sim$ 60TB across 30 servers
- · Openstack VM + RBD vol.
- · CentOS7 with ZFS
- · Not highly-available, but...
- · Cheap (thin-provisioning)
- · Resizable

Moving to Manila+CephFS very soon

CephFS for HPC

CERN is mostly a HTC lab

- · Parallel workload, quite tolerant to relaxed consistency
- · HPC corners in the Lab
 - · Beams, Plasma simulations
 - · Computation Fluid Dynamics
 - · Quantum ChromoDynamics
- · Require fill POSIX, read-after-write consistency, parallel IO
- $\cdot \sim$ 100 nodes HPC cluster accessing \sim 1PB CephFS

Ceph: Scale testing

Bigbang scale tests mutually benefitting CERN Ceph

Bigbang I: 30PB, 7200 OSDs, Ceph Hammer

Found several osdmap limitations

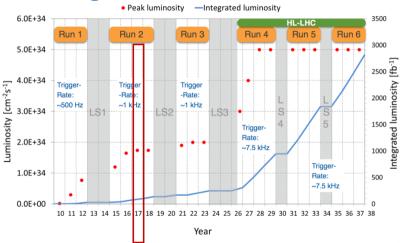
Bigbang II: Similar size, Ceph Jewel

Scalability limited by OSD-MON traffic.

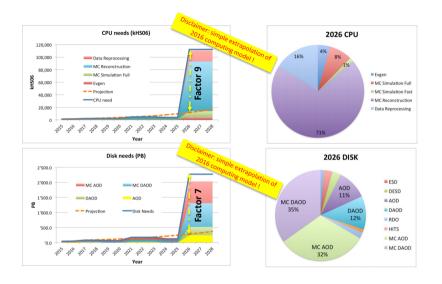
Lead to development of ceph-mgr

Bigbang III: 65PB, 10800 OSDs, Ceph Luminous

No major issue found


Introduction

Storage for physics


Infrastructure storage

Next challenges

- · Homegrown storage systems, augmented by open source
- "Data deluge" forecasted for 2026
- · CentOS is powering a huge part of our services

References

- A. Peters: Present Future Solution for dta storage at CERN
- D. van der Ster: Building Scale-Out Storage Infrastructures with RADOS and Ceph
- · S. Campana: The ATLAS Computing Challenge for HL-LHC

