

Contribution ID: 37 Type: poster

Isothermal section of the U-Fe-Ge ternary system at 900°C

Monday 29 March 2010 11:40 (5 minutes)

Investigations on uranium-based ternary intermetallics continue to reveal new phases, with specific structures and rich variety of ground-state properties. In the U-Fe-Ge system the previously reported ternary intermetallic compounds were UFeGe (P21/m, type UFeGe below 500K, and Pnma, type TiNiSi above 500K) [1], UFe2Ge2 (I4/mmm, type ThCr2Si2) [2], UFe6Ge6 (P6/mmm, type YbCo6Ge6) [3], and the solid solution U2Fe17-xGex with 2 < x < 3 (P63/mmc, type Th2Ni17) [4], in addition to the recently reported U2Fe3Ge compound (P63/mmc, type MgZn2) [5, 6].

Following the previous work made on the U-Fe-Ge system [7], the aim of the present study is to complete the experimental investigation of the 900°C isothermal section of the U-Fe-Ge phase diagram and the characterization of the new intermetallic compounds.

The samples were prepared by direct melting the calculated amounts of U, Fe and Ge elements (purity >99.9 mass%), in an arc-melting furnace and under high purity argon atmosphere, followed by annealing at 900°C for one week inside evacuated quartz ampoules. The microstructure of all samples was analysed by SEM-EDS and the crystalline structure was characterized by powder and single-crystal X-ray diffraction.

The existence and composition of all the binary phases previously reported at 900°C were confirmed and their crystal data are in agreement with literature. The binary compound UFe2 is the only one existing in the U-Fe system at the studied temperature, and in this ternary system, there is a substitution of iron by germanium in an amount up to 6.7 at%, as solid solution UFe2-xGex. All the other binary phases have negligible solubility extensions into the ternary system at this temperature.

The isothermal section was found to be very rich: there are 13 stable phases at 900° C. Among these, there are nine new intermetallic compounds: U34Fe4-xGe33, UFe1-xGe2, U3Fe2Ge7, U9Fe7Ge24, U2Fe3Ge, U6Fe16Ge7, U3Fe4Ge4, UFe4Ge2 and U6Fe22Ge13. Within these new phases, three are new original structural types: U34Fe4-xGe33 and U9Fe7Ge24 (tetragonal system), and U6Fe22Ge13 (orthorhombic system). Within this section there are also two solid solutions UFe6+xGe6-x (x<0.7), which crystallizes in the YCo6Ge6 structure type and U2Fe17-xGex (with 2<x<3.7), crystallizing in the Th2Ni17-type structure [7].

Author: Ms HENRIQUES, Margarida (Departamento de Química, Instituto Tecnológico e Nuclear/CFMC-UL, 2863-953 Sacavém, Portugal)

Co-authors: Mr LIGNIE, Adrien (Sciences Chimiques de Rennes, Laboratoire de Chimie du Solide et Matériaux, UMR CNRS 6226, Université de Rennes 1, Rennes, France); Prof. FERRO, Alberto C. (Departamento Engenharia Materiais, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal); Dr GONÇALVES, António P. (Departamento de Química, Instituto Tecnológico e Nuclear/CFMC-UL, 2863-953 Sacavém, Portugal); Dr BERTHE-BAUD, David (Sciences Chimiques de Rennes, Laboratoire de Chimie du Solide et Matériaux, UMR CNRS 6226, Université de Rennes 1, Rennes, France); Dr NOEL, Henri (Sciences Chimiques de Rennes, Laboratoire de Chimie du Solide et Matériaux, UMR CNRS 6226, Université de Rennes 1, Rennes, France); Prof. TOUGAIT, Olivier (Sciences Chimiques de Rennes, Laboratoire de Chimie du Solide et Matériaux, UMR CNRS 6226, Université de Rennes 1, Rennes, France)

 $\textbf{Presenter:} \quad \text{Ms HENRIQUES, Margarida (Departamento de Química, Instituto Tecnológico e Nuclear/CFMC-UL,} \quad \\$

2863-953 Sacavém, Portugal)

Session Classification: Introductions to Posters

Track Classification: Materials science, nanomaterials