Vacuum aspects of Q1-TAXS area

Jaime Perez Espinos, Lukasz Krzempek CERN

Outline

- From LHC to HL-LHC
- Q1-TAXS vacuum assembly configurations
- TAXS-experiment connection
- Q1-TAXS connection
- Summary

From LHC to HL-LHC

\$lope 1.29% Tilt 0.66%
displacemente fron warh to cold are hot vet counted in the fihal dinensions at operational conditions

From LHC to HL-LHC (IR5 VAX area)

HL-LHC beam aperture and TAXS alignment tolerances

	Cold bore		Beam screen						
	Inner diameter	Thickness	Nominal aperture* $\mathrm{H}(\mathrm{V})+1-45^{\circ}$	Vertical tolerance		Horizontal tolerance		Cooling tube Nb * OD * thickness	Shielding maximum height
				Shape	Positioning**	Shape	Positioning**		
Q1	136.7 H8	$40 /+0.5$	99.7; 99.7	+/-1.15	-1.23/0.15	+/-1.1	+/- 0.65	4*16 * 1	16
Q2a	C. Garion		$119.7 ; 110.7$	+/-1.15	-1.05/+0.11	+/-1.1	+/-0.65	4*10 * 1	6
nnn	(2) (3) (4)	protection Transition from 18 In D2 cold mass The beam size is	1107.11~7 nm to 194 mm occurs beam pipes will be pa ke from the average be	CWT separation and	. $1 \cap 51 . \cap 11$.	aration	. $n=5$ R. De M 26/04/20		. $3.5+3.5$ fo. 4

CERN

HL-LHC (HL-LHC IR5 VAX area)

HL-LHC (HL-LHC IR5 VAX area)

(i)

HL-LHC VAX areas. IR1 vs. IR5

- Interfaces and alignment principles are similar and compatible but not the same, as some basic differences are present
- Different support configurations (yellow structures in pictures)
- Different dismantling scenarios
- Cabling and piping needs are similar, but routing constraints are different \Rightarrow different solutions and approaches
- IR5: pumping/venting lines cross TAXS and 'free maintenance area' \Rightarrow REDUNDANCY

New VAX area in IR1 and 5 (TAXS-experiment connection)

- Need of sectorization to decouple experiment's vacuum from machine vacuum
- Instrumentation in front of Q1 moved to the experiment's cavern to reduce radiation to the personnel: robustness, remote handling and tooling are required
- Installation in LS3 during TAS exchange
- The impact on the experimental vacuum beam pipe is under study \Rightarrow some studies to be ready for LS2
- Objective: unique diam. 80 mm aperture along all the VAX vacuum components

3 independent modules per IR and side:

- 2 valve modules
- 1 VAX module

TAXS-experiment connection modules

- Use of 'known' reliable solutions whenever possible (e.g. DN100 'collimator type’ quick flanges)
- Remote handling and mechanism principles and solutions to be the same for all modules
- Prototyping phase to be started (some structural supports already prototyped)
\square
All-metal valves to be the same in all cases
- New HL-LHC 80 mm aperture valve under study with the supplier

Q1-TAXS connection

- Pumping and bellows to decouple room temperature TAXS from cryogenic temperature triplet
- Unbaked a-C coated TAXS
- Considered as a free maintenance area: vacuum components to be reduced at maximum; high quality and robustness are required
- Installation in LS3 during TAS exchange
- Risk analysis to drive the final connection concept \Rightarrow few alternatives due to confined space, bad accessibility, high radiation levels and exceptional potential interventions

Summary

- TAXS-Experiments \& Q1-TAXS areas studies are coordinated by WP8
- TAXS-experiment area more evolved than Q1-TAXS area
- Prototyping phase is to be started for remote handling aspects (TAXS-exp.)
- All envelope, integration and routing studies are well advanced (TAXS-exp.) for both IR1 and IR5
- There is a baseline layout (for both IR1 and IR5) which still requires some studies and developments (new valve aperture, bellows with or w/o RF fingers, Q1-TAXS connection concept, etc.)
- Specs. and some studies to be finished by 2017 for LS2 works (TAXS-exp.)
- Risk analysis and final connection concept studies to be re-launched soon (Q1-TAXS)
(i)

Thanks for your attention

Back-up slides

Radiation dose map: TAS LHC side vs TAS experiment side

$H^{*}(10)$ in $\mathrm{mSv} / \mathrm{h}$, along beam line ($50-100 \mathrm{~cm}$)

ATLAS

ATLAS with VAX

ATLAS, Ratio

$H^{*}(10)$ in mSv/h, LS6 1 months cooling

Minor impact in ATLAS

Some more impact in CMS

H*(10) in mSv/h along beam line (ATLAS)

Average dose rate 30 cm from beam line with Forward shielding open...

14 TeV pp ATLAS VAX Res.Dose rate along beam line, ($10<\mathrm{Y}<50 \mathrm{~cm}$)

CERN

