CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-08 08:30:28.497920 GMT Run / Event / LS: 280327 / 55711771 / 67

 $\begin{array}{c|c} \mbox{Anti-}k_{\rm T} \ {\rm R=}0.8 \ {\rm jet} \\ \hline p_{\rm T} & 1374 \ {\rm GeV} \\ \eta & 0.79 \\ \phi & 0.43 \\ M_{\rm SD} & 94.8 \\ \hline \tau_{21} & 0.29 \end{array}$ 

CMS Experiment at LHC, CERN Data recorded: Mon Jul 18 19:59:10 2016 CEST Run/Event: 276950 / 1080730125 Lumi section: 573

CMS

CMS Experiment at LHC, CERN Data recorded: Mon Jul 18 19:59:10 2016 CEST Run/Event: 276950 / 1080730125 Lumi section: 573

# Particle flow and PUPPI @ L1 for CMS at HL-LHC

Can we trigger on boosted jets at 25ns?

Jennifer Ngadiuba (CERN)

on behalf of the CMS Collaboration

BOOST 2018 July 16 - 20 Campus de Jussieu, Paris



### The challenge: triggering at (HL-)LHC

Squeeze the beams to increase data rates → multiple pp collisions per bunch crossing (pileup)

2016: <PU> ~ 20-50 2017 + Run 3: <PU> ~ 50-80 HL-LHC: 140-200

CHALLENGE: maintain physics in increasingly complex collision environment

→ <u>untriggered events lost forever!</u>

Sophisticated techniques needed to preserve the physics!

Particle flow and PUPPI THIS TALK!

Machine learning (see talk on Thursday)

ennifer Ngadiuba - Particle flow and PUPPI @ L1 for HL-LHC

### Particle flow

Efficient combination of complementary detector subsystems Reconstruct and identify individually all particles Improves any single system energy/spatial resolution

JINST 12 (2017) P10003

Key ingredients: efficient track reconstruction for charged particles and fine granularity calorimeter



muons, electrons, photons, neutral hadrons, charged hadrons

### Particle flow

Widely used in offline and HLT event reconstruction since LHC Run 1

Particle flow physics performance impact

JINST 12 (2017) P10003



Improved jet  $p_T$  resolution

Improved missing  $p_T$  resolution

## PUPPI

Particle flow: reconstructs all particles, also from PU interactions

#### **PileUp Per Particle Identification (PUPPI):**

an algorithm that determines, per particle, a weight for **how likely** a particle is from PU **key insight:** using QCD ansatz to infer neutral pileup contribution

- Define a local discriminant, α, between PU and LV (leading vertex)
- 2. Get data driven α distribution for PU using charged PU tracks

$$\alpha_i^C = \log \left[ \sum_{j \in Ch, LV} \frac{p_{T,j}}{\Delta R_{ij}} \Theta(R_0 - \Delta R_{ij}) \right]$$



# PUPPI

Particle flow: reconstructs all particles, also from PU interactions

### **PileUp Per Particle Identification (PUPPI):**

an algorithm that determines, per particle, a weight for **how likely** a particle is from PU **key insight:** using QCD ansatz to infer neutral pileup contribution

- Define a local discriminant, α, between PU and LV (leading vertex)
- Get data driven α distribution for PU using charged PU tracks
- For the neutrals, ask "how un-PU-like is α for this particle?", compute a weight
- Reweight the 4-vector of the particle by this weight, then proceed to interpret the event as usual

$$\alpha_i^C = \log\left[\sum_{j \in Ch, LV} \frac{p_{T,j}}{\Delta R_{ij}} \Theta(R_0 - \Delta R_{ij})\right]$$



Jennifer Ngadiuba - Particle flow and PUPPI @ L1 for HL-LHC

# PUPPI

### Large gain with PUPPI, especially at high pile-up

Jet  $p_T$  and missing  $p_T$  resolution Fake jet rate Jet substructure Lepton isolation

Efficiency 1.4 1.2

0.8

0.6

0.4

0.2

0

0

arxiv.1407.6013 (original), LHCC-P-008 (CMS Phase-2 upgrade), JME-14-001, JME-16-003, JME-16-004 many CMS physics analyses...



Results from BOOST17, see new results in A. Benecke's talk on Tuesday

Jennifer Ngadiuba - Particle flow and PUPPI @ L1 for HL-LHC

# The CMS trigger system

Triggering typically performed in multiple stages



Trigger decision to be made in O(µs) Latencies require all-FPGA design

Computing farm for detailed analysis of the full event Latency O(100 ms)

For HL-LHC upgrade: latency and output rates will increase by ~ 3 (from 3.8  $\rightarrow$  12.5 µs @ L1)

# Upgraded CMS trigger for HL-LHC



# Upgraded CMS trigger for HL-LHC

Addition of **tracks** to L1 trigger is a game-changer Re-think algorithms: how to best combine *tracking, calorimeter, and muon information* The big challenge: mitigation of **pileup** 



# PF algorithm @ L1



# PF algorithm @ L1



- Clusters with no associated tracks  $\rightarrow$  photon
- If  $p_T^{cluster} \ge \sum p_T^{track}$  within uncertainties  $\rightarrow$  electron
- If  $p_T^{cluster} >> \sum p_T^{track} \rightarrow electron+photon$

# PF algorithm @ L1



### PF+PUPPI algorithm @ L1



Jennifer Ngadiuba - Particle flow and PUPPI @ L1 for HL-LHC

### Performance for MET and jets

Gains in rate reduction, H<sub>T</sub> and p<sub>T</sub><sup>miss</sup> resolution, signal efficiency, lower threshold



For a fixed L1 accept rate of 20 kHz: lower threshold and sharper turn-on

Missing p<sub>⊤</sub>: better trade-off between L1 rate and signal efficiency

#### LHCC-2017-009

### What are FPGAs?

### Latencies at L1 trigger require all-FPGA design

Field Programmable Gate Arrays are reprogrammable integrated circuits

Contain array of **logic cells** embedded with **DSPs**, **BRAMs**, etc.

High speed input/output to handle the large bandwith

Support highly parallel algorithm implementations

Low power (relative to CPU/GPU)



### **FPGA** diagram



**Digital Signal Processors (DSPs):** logic units used for multiplications

Random-access memories (RAMs): embedded memory elements

Flip-flops (FF) and look up tables (LUTs) for additions

### How are FPGAs programmed?

Latencies at L1 trigger require all-FPGA design

# High Level Synthesis is used to compile the algorithms into a firmware block (IP core)

generate standard register-transfer level (RTL) code for FPGA from more common C/C++ code

pre-processor directives and constraints used to optimize the timing

firmware for PF developed in 2-3 months, only physicists

### We use Xilinx Vivado HLS

Main reference: https:// www.xilinx.com/support/ documentation/sw\_manuals/ xilinx2014\_1/ug902-vivado-highlevel-synthesis.pdf





### FPGA diagram



**Digital Signal Processors (DSPs):** logic units used for multiplications

Random-access memories (RAMs): embedded memory elements

Flip-flops (FF) and look up tables (LUTs) for additions

### Firmware implementation

- To best profit from FPGA capabilities:
  - use integers instead of floating-point
  - keep the mathematics simple
- Expolit parallelism to guarantee latency
  - the algo is **pipelined** to accept new inputs every 1 or 2 clock cycles
  - combinatorical **loops**, e.g. on object pairs in the linking, are **unrolled** to compute all values in parallel



3 cycles

WR

CMP

### Firmware implementation

- To best profit from FPGA capabilities:
  - use integers instead of floating-point
  - keep the mathematics simple
- Expolit parallelism to guarantee latency
  - the algo is **pipelined** to accept new inputs every 1 or 2 clock cycles
  - combinatorical **loops**, e.g. on object pairs in the linking, are **unrolled** to compute all values in parallel

### Preliminary estimate from HLS

1 Xilinx Virtex Ultrascale+ (VUP9) 4  $\Delta \eta \times \Delta \phi = 0.6 \times 0.6$  regions 25 tracks + 20 clusters every BX ~ 40% resource usage 0.7 µs latency: 550 ns for PF, 150 ns for PUPPI

- The PF+PUPPI is inherently a regional algorithm → different detector regions can be processed independently and in parallel
  - complexity and FPGA resource use depend on the maximum allowed number of input objects, determined by the size of the detector region

### Hardware demonstration

A proof-of-concept implementation running on current and early prototype trigger boards

based on Xilinx Virtex-7 FPGAs, VU9P with development kit and on Amazon AWS

Interface the core with the board infrastructure using IPbus or AXI-PCIe to **inject input patterns** from CMS detector simulation into the core, and **the output is checked for bitwise identity** with the expections from HLS.





### Summary and outlook

### Bringing advanced physics algorithms to the hardware trigger!

Proof-of-concept for **PF+PUPPI running at L1** Large physics gain:  $H_T$ , missing  $p_T$ , jet, lepton isolation



### How about machine learning?

Many new ML algorithms developed for offline boosted-jet tagging using only kinematics of **particle candidates as input**, few examples:

Lola (G. Kasieczka et al. JHEP05(2017)006)  $\rightarrow$  fully connected layers DeepAK8 and double b-tagger (<u>CMS-DP-2017-049</u>)  $\rightarrow$  one-dimensional convolutional layers





NN inference of such models possible on FPGA in L1 latency (see talk on Thursday)

#### **DeepJet for boosted resonances**



See L. Gouskos's talk on Wednesday

### Towards FPGA-friendly jet algos

**Energy flow polynomials:** complete set of jet substructure observables forming a discrete linear basis for any common jet observables



Jennifer Ngadiuba - Particle flow and PUPPI @ L1 for HL-LHC

### Towards FPGA-friendly jet algos

### Anti-kT jet clustering algo preferred by theorists and good for offline reconstruction

sequential clustering not suitable for low latency on FPGA

### Explore more FPGA friendly algos for L1 applications with use of PF/PUPPI candidates

Jets without jets: use local computation to characterize jet-like and subjet-like structures w/o jet clustering algo

$$\begin{split} \widetilde{N}_{j\text{et}}(p_{T\text{cut}},R) &= \sum_{i \in \text{event}} \frac{p_{Ti}}{p_{Ti,R}} \Theta(p_{Ti,R} - p_{T\text{cut}}), \\ \widetilde{H}_{T}(p_{T\text{cut}},R) &= \sum_{i \in \text{event}} p_{Ti} \Theta(p_{Ti,R} - p_{T\text{cut}}), \\ \widetilde{p}_{T}(p_{T\text{cut}},R) &= \left| \sum_{i \in \text{event}} \vec{p}_{Ti} \Theta(p_{Ti,R} - p_{T\text{cut}}) \right|, \end{split}$$

$$\widetilde{N}_{ ext{subjet}}(p_{T ext{subcut}}, R_{ ext{sub}}) = \sum_{i \in ext{jet}} rac{p_{Ti}}{p_{Ti, R_{ ext{sub}}}} \Theta(p_{Ti, R_{ ext{sub}}} - p_{T ext{subcut}}).$$

D. Bertolini et al., JHEP04(2014)013



Fast PUPPI

Proof-of-principle studies indicate the feasibility of performing Particle Flow reconstruction and PUPPI pileup mitigation in the CMS HL-LHC Level-1 Trigger

Significant physics performance improvements over traditional trigger algorithms

For the first time, possibility to trigger on boosted jets at 25 ns with large gain for physics!



Fast PUPPI

# Backup

Implementation of Puppi proof-of-concept using High level synthesis (HLS) as well

COMPUTE FOR EACH NEUTRAL

Θ

[1] define a local discriminant, a, between pileup (PU) and leading vertex (LV)

$$\alpha_i^C = \log$$

 $i \in Ch.L$ 

$$(R_0-\Delta R_{ij})$$

[2] get data-driven a distribution for PU using charged PU tracks

[3] for the neutrals, ask "how un-PU-like is α for this particle?", compute a weight

[4] reweight the four-vector of the particle by this weight, then proceed to interpret the event as usual PRECOMPUTE STEP 2 OFFLINE WITH CONSTANTS (FOR GIVEN PILEUP LEVEL)

DO STEP 3/4 WITH A LOOK-UP TABLE

RESOURCE USAGE ONLY FEW % OF FPGA AND 100S OF NS LATENCY WITH LITTLE DEGRADATION IN PERFORMANCE

### Input data size to the correlator

| Input       | Object  | N bits/object | N objects | N bits/BX | Total BW (Gb/s) |
|-------------|---------|---------------|-----------|-----------|-----------------|
| Tracker     | Track   | 100           | 900       | 90 000    | 3 600           |
| Barrel Calo | Cluster | 16            | 2 4 4 8   | 39 168    | 1 567           |
| Barrel Calo | Tower   | 32            | 612       | 19 584    | 783             |
| HF          | Tower   | 10            | 1 4 4 0   | 14 440    | 553             |
| Endcap Calo | Cluster | 128           | 400       | 51 200    | 1 600           |
| Endcap Calo | Tower   | 16            | 2 400     | 38 400    | 1 536           |
| Barrel Muon | Track   | 64            | 36        | 2 3 0 4   | 92              |
| Endcap Muon | Track   | 64            | 36        | 2 304     | 92              |
| Total       |         |               |           |           | 8 547           |

Table 5.1: Summary of prototype logical input data to the CT.