Modifications to Jet Spectra and Substructure in PbPb Collisions with CMS

Christopher McGinn
Massachusetts Institute of Technology
On Behalf of the CMS Collaboration
Boost 2018 in Paris, France
2018.07.17
Physics of Jets in Medium

- Modified in medium compared to MonteCarlo and pp reference
 - Energy is redistributed in and out-of-cone
 - Substructure observables are a tool to study this redistribution
Rehearsals Next Week:

Wednesday: Jet RAA 10:00, Jet Substructure 10:40, Gamma+jet

Tuesday: Dijet-eta 16:00

Monday: Gluon splitting 14:00, D+jets 14:40

Meaning: next two weeks will be virtual

Full Agenda

Hard Probes Approval freeze: September 7

BOOST/ICHEP Approval freeze: June 22

Good performance just with CHS at typical levels of pileup

Typical level of pileup here -> peripheral-most in PbPb

For more details see JINST 12 (2017) P10003 and morning talk from Anna Benecke

Christopher McGinn
Jet Reconstruction with CMS in PbPb

- Fluctuations in ρ contribute to jet resolution as N term:

$$\sigma\left(\frac{p_T^{\text{RECO}}}{p_T^{\text{GEN}}}\right) = \sqrt{C^2 + \frac{S^2}{p_T^{\text{GEN}}} + \frac{N^2}{(p_T^{\text{GEN}})^2}}$$

- Typically HI chooses small cone and low-p_T
- Alternatively, scale away UE by p_T
 - N/p_T in quadratic sum, and go to large cone

- **pp**: 27.4 pb\(^{-1}\) at 5.02 TeV
- **PbPb**: 404 µb\(^{-1}\) at 5.02 TeV

Fig. From: CMS-DP-2018-024
Additional Complications in PbPb

- Hard and soft components from single vertex $O(10 \text{ fm})$
- Background is modulated in ϕ (flow of medium)
- Jet-medium interaction gives ambiguous correlated background

Subtracting Underlying Event in HI at CMS

- Considering subtraction as \textbf{two} separate problems
 1. What amount of UE to subtract
 2. How to subtract
- Then for CMS substructure measurements:

 Constituent Subtraction (CS)

 1: Estimated by median unsubtracted k_t jet

 2: Add “ghost” particles randomly with fixed area and p_T according to rho, subtracting from real particles iteratively until gone

For more details see JHEP06 (2014) 092 and morning talk from Peter Berta
Measurement of z_g in pp with Open Data

Successful application in open data with tracks in 7 TeV pp

Good description by theory and generators
Measurement of z_g in pp

- PYTHIA6, PYTHIA8, and HERWIG++ all describe distribution shape to $\sim 15\%$
- Given reasonable baseline, how does it look in PbPb?
Measurement of z_g in PbPb

$\sqrt{s_{NN}} = 5.02$ TeV, pp 27.4 μb$^{-1}$, PbPb 404 μb$^{-1}$

- z_{cut} and β here are “Flat” grooming setting
- Increasing shape modification with centrality
Measurement of z_g in PbPb

Centrality: 0-10%

$140 < p_{T,\text{jet}} < 160 \text{ GeV}$

Soft Drop $\beta = 0$, $z_{\text{cut}} = 0.1$, $\Delta R_{12} > 0.1$

$300 < p_{T,\text{jet}} < 500 \text{ GeV}$

- Persistent effect thru large p_T range
- Consistent at highest p_T, but statistically limited
Measurement of Groomed Mass in pp collisions

Christopher McGinn

- Left: Grooming does not consider radial distance (β=0)
- Right: Grooming preferentially selects jet core
- PYTHIA6, HERWIG++ show good agreement with data

See also CMS-PAS-SMP-16-010 and ATLAS (Sub. PRL) pp groomed jet mass

Identify subjets satisfying condition:

\[
\frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}} > z_{cut} \left(\frac{\Delta R_{ij}}{R_0} \right)^\beta
\]

Calculate:

\[
M_g = (p_{1\mu} p_{2\mu})^{0.5}
\]

Normalize by jet \(p_T\)
Measurement of Groomed Mass in PbPb

- Core shows no modification
- “Flat” grooming shows shape modified at large M_g/p_T
No simultaneous MC description of M_g/p_T

- Models that describe enhancement in “Flat” grooming also show large M_g/p_T in core grooming
Measuring Jet Shapes with a Boson Tag

Both jets interact with medium

Energy is redistributed

Dijet

Photon propagates unmodified

• Photon gives a clean tag of the starting momentum
• Also probes a different q/g fraction (see backup)
• At statistical cost - measurements at much lower p_T than corresponding inclusive measurements
Measuring Jet Shapes with a Boson Tag

1 Introduction

1. Introduction

\[\sqrt{s_{NN}} = 5.02 \text{ TeV}, \text{PbPb} 404 \mu \text{b}^{-1}, \text{pp} 27.4 \text{ pb}^{-1} \]

CMS Preliminary

\[p_T^\gamma > 60 \text{ GeV/c}, |\eta^\gamma| < 1.44, \Delta \phi_{\gamma} > \frac{7\pi}{8} \]

anti-\(k_T \) jet \(R = 0.3, p_T^{\text{jet}} > 30 \text{ GeV/c} \)

\[|\eta^\text{jet}| < 1.6, p_T^{\text{trk}} > 1 \text{ GeV/c} \]

\[\rho(r) = \frac{1}{\delta r} \sum_{\text{jets}} \sum_{\text{trk} \in [r_a, r_b]} \left(\frac{p_T^{\text{trk}}}{p_T^{\text{jet}}} \right) \]

\[\sum_{\text{trk} \in [0, r_f]} \left(\frac{p_T^{\text{trk}}}{p_T^{\text{jet}}} \right) \]

CMS-PAS-HIN-18-006

- Look at track sums in rings around the jet axis, normalized to the full jet charged energy

Christopher McGinn
Measuring Jet Shapes with a Boson Tag

- In central PbPb, observe enhancement of periphery particles
- Comparable to results of groomed jet mass with $\beta=0$

$\sqrt{s_{NN}} = 5.02$ TeV, PbPb 404 μb$^{-1}$, pp 27.4 pb$^{-1}$

$\rho > 60$ GeV/c, $|\eta| < 1.44$, $\Delta\phi > \frac{7\pi}{8}$

anti-k_T jet $R = 0.3$, $p_T^{\text{jet}} > 30$ GeV/c

$|\eta^{\text{jet}}| < 1.6$, $p_T^{\text{trk}} > 1$ GeV/c

- Take Ratio w/ pp

$\text{CMS-PAS-HIN-18-006}$
Updating Constituent Subtraction at CMS

- Substitute iterative pedestal estimation of underlying event in η-strips into CS (see backup)
- Expanding CS jets to forward region, $|\eta| > 1.3$
- Add modulation to underlying event in φ to account for flow

Constituent Subtraction (CS)

1: Estimated by median unsubtracted k_T jet

2: Add "ghost" particles randomly with fixed area and p_T according to rho, subtracting from real particles iteratively until gone

1a: ρ estimated in η-strips defined by detector geometry

1b: Add event-by-event φ modulation
- Extract an event-by-event v_2 and v_3 by fitting particle flow candidates
- Extracted $v_2(v_3)$ are used to modulate CS ρ to add ghost particles
Jet Energy Scale at $R=0.4$ and $R=0.8$

- Scale closure of $R=0.4$ (Left) and $R=0.8$ (Right) jets over all centrality
- Identical corrections applied to all centrality, derived from unsubtracted jets in PYTHIA events

Fig. From: CMS-DP-2018-024
Jet Energy Resolution at $R=0.4$ and $R=0.8$

- Energy resolution of $R=0.4$ (Left) and $R=0.8$ (Right) jets over all centrality.
- In large cone, UE drives high resolution at low-p_T.
 - JER $\sim 18\%$ at 200 GeV ($R=0.8$).

Fig. From: CMS-DP-2018-024
Jet energy scale closure as function of event plane for R=0.8 w/o flow correction (Left) and with flow correction (Right).

- Significant flattening of scale translates directly to resolution reduction.
Conclusions

- Inclusive jet substructure measurements show no modification to jet core
- Modification observed with flat grooming in $z_g, M_g/p_T$
- Boson tagged jets at lower p_T show energy redistributed out of cone
- HI jets are being commissioned for large-R spectra/substructure
Backup
Jet energy scale closure as function of event plane for $R=0.4$ w/o flow correction (Left) and with flow correction (Right).

- Some flattening of scale less than corresponding $R=0.8$ case.
Illustration of CS Subtraction Iterations
Constituent Subtraction

SIGNAL: Hard-scattering in PbPb collision producing jets

UNDERLYING EVENT: Uncorrelated particles from other nucleon-nucleon interactions

JHEP06 (2014) 092
GHOST PARTICLES: Artificial particles added to the event with fixed area. Ghosts are given a p_T according to ρ times the area they inhabit, A_g.
• Add “ghost” particles with fixed area according to:

\[p^g_T = A_g \cdot \rho_i \]

\[m^g_0 = A_g \cdot \rho_{m_0} \]
Constituent Subtraction

- Combine iteratively with real particles by minimizing metric:

\[\Delta R_{i,k} = p_{T_i} \cdot \sqrt{(y_i - y_k^g)^2 + (\phi_i - \phi_k^g)^2}. \]
Constituent Subtraction

- Particle $p_T >$ Ghost p_T
- Ghost $p_T = 0$
- Particle $p_T = -$ Ghost p_T

JHEP06 (2014) 092

“CMS”
Constituent Subtraction

- Note: Some signal will occasionally be subtracted by probability. Relatedly, some UE will remain.
Constituent Subtraction

- Particle $p_T < \text{Ghost } p_T$
- Ghost $p_T = \text{Particle } p_T$
- Particle $p_T = 0$

"CMS"

JHEP06 (2014) 092

SIGNAL
UNDERLYING EVENT
GHOST PARTICLES
Constituent Subtraction

- Particle $p_T <$ Ghost p_T
- Ghost $p_T = $ Particle p_T
- Particle $p_T = 0$

JHEP06 (2014) 092

"CMS"
Constituent Subtraction

- Continue until ghost or real particles are exhausted
- Cluster remaining event into jets

\[JHEP06 \text{(2014) 092} \]

\[\eta \]

\[\phi \]

"CMS"

SIGNAL

UNDERLYING EVENT

GHOST PARTICLES
Illustration of PU Subtraction Iterations
Iterative Pedestal Algorithm

1. $<E_T>$ calculated in strips of η.
 Subtract $<E_T> + \sigma$

- ρ or $<E_T>$ is calculated in strips of rapidity
 - Follows HCal tower geometry ($\Delta \eta=0.087$ at mid-rapidity)
- Constituents are combined into pseudotowers
- Pseudotower energy is reduced by $<E_T>$ plus a compensating $\sigma(E_T)$
- Negative towers are zeroed

For details see:
- CMS, arXiv:1102.1957
- Kodolova et al., EPJC 50 (2007) 117
Iterative Pedestal Algorithm

1. $<E_T>$ calculated in strips of η. Subtract $<E_T> + \sigma$

2. Run anti-k_T algorithm on background-subtracted towers

- Subtracted towers are clustered into anti-k_T jets
- On first iteration, jets are necessarily oversubtracted
 - Included in estimation of underlying event

For details see:

- CMS, *arXiv:1102.1957*
- Kodolova et al., *EPJC 50 (2007) 117*
- Subtracting towers are clustered into anti-k_T jets
- On first iteration, jets are necessarily oversubtracted
 - Included in estimation of underlying event
Iterative Pedestal Algorithm

1. $<E_T>$ calculated in strips of η. Subtract $<E_T> + \sigma$

2. Run anti-k_T algorithm on background-subtracted towers

3. Exclude reconstructed jets and re-estimate background

- A second iteration is run excluding “jetty” regions of the detector from each η-strip extraction

- Reduced jet bias to estimation of underlying event

For details see:

- CMS, arXiv:1102.1957
- Kodolova et al., EPJC 50 (2007) 117
- Reduced jet bias to estimation of underlying event

Iterative Pedestal Algorithm

1. \(<E_T>\) calculated in strips of \(\eta\). Subtract \(<E_T> + \sigma\)
2. Run anti-\(k_T\) algorithm on background-subtracted towers
3. Exclude reconstructed jets and re-estimate background
4. Re-run anti-\(k_T\) algorithm to get final jets

- Subtract towers according to new estimate in same manner as first iteration
- Cluster newly subtracted towers into final set of anti-\(k_T\) jets

For details see:
- CMS, arXiv:1102.1957
- Kodolova et al., EPJC 50 (2007) 117
Dijet has greater fraction of gluon relative to both boson+jets

Z and γ + jets fraction comparable above 100 GeV

Below 100, γ has greater fraction quark than Z
Experimental Results: Measured jet production in R-scans
- Some effect at low-p_T, converges at high-p_T
- Restricted to low-p_T by sample size
- Limited systematically by pp reference being taken during different data-taking periods
- Limited in R by underlying-event (UE) at low-p_T