Prospects for a measurement of the W boson mass in the all-jets final state at hadron colliders

Marat Freytsis (U. Oregon), Philip Harris (MIT), Andreas Hinzmann (U. Hamburg), Ian Moult (UC Berkeley), Nhan Tran (FNAL), Caterina Vernieri (FNAL)

19. July 2018

BOOST 2018, Paris

W mass measurements

Previous measurements

ALEPH (Eur.Phys.J.C47:309-335,2006): lvqq: ± 54 (stat) ± 25 (syst) MeV qqqq: ± 70 (stat) ± 28 (syst) ± 28 (FSI) MeV

> ATLAS (Eur. Phys. J. C 78 (2018) 110): Iv: ± 7 (stat) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV

The all-jets final state

Outline

- Method
 - Signal and background
 - Choice of tagger
 - Extraction of W and Z mass peak
- Statistical uncertainty
 - Where LHC stands now
 - Trigger strategy
- Systematic uncertainties
 - Experimental uncertainties
 - Perturbative effects
 - Non-perturbative effects
 - Where MC generators stand now
 - Constraining non-perturbative effects
- Discussion

Signal and background

- W+jets, Z+jets, QCD multijets, top quark production
- Madgraph + simple detector simulation tuned to current jet substructure performance of ATLAS/CMS detectors
- Pseudo-data corresponding to HL-LHC luminosity

Choice of tagger

- Flatten background by de-correlating jet substructure selection from jet mass
- Small effect on signal efficiency, but better control of background estimate

Extraction of W and Z mass peaks

- Enriched sample of Z-bosons with double-b-tagger
- Measure m_z-m_w such that many experimental systematic uncertainties cancel out

Statistical uncertainty

- Assuming current detector performance and triggers
- Statistical precision for m_w:

	Selection	Int. luminosity	σ_{m_W} [MeV]
LHC	decorrelated $N_2^{\beta=1}1\%$, $p_T > 500 \text{ GeV}$	$300/{ m fb}$	75
HL-LHC	decorrelated $N_2^{\beta=1}1\%$, $p_T > 500 \text{ GeV}$	$3000/\mathrm{fb}$	23

• Statistical precision for m_z-m_W:

	Selection	Int. luminosity	σ_{m_W} [MeV]
LHC	decorrelated $N_2^{\beta=1}2\%$, $p_T > 500 \text{ GeV}$	$300/\mathrm{fb}$	171
HL-LHC	decorrelated $N_2^{\beta=1}5\%$, $p_T > 500 \text{ GeV}$	$3000/\mathrm{fb}$	48

• Limited by cross section of $Z \rightarrow bb$

Where LHC stands now

Phys. Rev. Lett. 120 (2018) 071802

Trigger strategy

- Current trigger threshold for at ATLAS/CMS p_T>~500 GeV
- Alternative approaches storing lower size events at higher rates allows going to p_T>~200 GeV
- Assume substructure evaluated at L1+HLT trigger level at HL-LHC

Strategy	Selection	Int. luminosity	σ_{m_W} [MeV]
measure m_W	decorrelated $N_2^{\beta=1}1\%$, $p_T > 500 \text{ GeV}$	$3000/\mathrm{fb}$	23
measure m_W	decorrelated $N_2^{\beta=1}1\%$, $p_T > 400 \text{ GeV}$	$3000/\mathrm{fb}$	21
measure m_W	decorrelated $N_2^{\beta=1}2\%$, $p_T > 300 \text{ GeV}$	$3000/\mathrm{fb}$	13
measure $m_Z - m_W$	decorrelated $N_2^{\beta=1}5\%$, $p_T > 500 \text{ GeV}$	$3000/\mathrm{fb}$	48
measure $m_Z - m_W$	decorrelated $N_2^{\beta=1}5\%$, $p_T > 400 \text{ GeV}$	$3000/\mathrm{fb}$	40
measure $m_Z - m_W$	decorrelated $N_2^{\beta=1}5\%$, $p_T > 300 \text{ GeV}$	$3000/\mathrm{fb}$	

Systematic uncertainties

Experimental uncertainties

- Assume particle-flow reconstruction, evaluating systematic effects separately on charge particles, photons (and π^0) and neutral hadrons
- Estimate precision of energy scale calibration needed to achieve uncertainty on m_W less than 10 MeV

Quantity	Effect	Understanding needed	Typical precision
		for $\sigma_{m_W} = 10 \text{ MeV}$	nowadays
m_W	Charged particle energy scale	0.03%	0.05%
m_W	Photon (and π^0) energy scale	0.06%	0.1%
m_{W}	Neutral hadron energy scale	0.1%	1%
m_W	200 pileup interactions	1.4%	1%

- These uncertainties cancel when measuring m_z-m_w
 - Residual effects from hadronization model affecting
 W→qq vs. Z→bb jet response (discussed later)

Perturbative effects

- Prediction of W boson kinematics not a limiting factor in all-jets final state
- Need prediction at 5% level of how much substructure selection changes the W mass

Non-perturbative effects

- Disabling non-perturbative effects (MPI and hadronization in Pythia8) to estimate of size of effect on both m_w and m_z-m_w
 - 10 times smaller for m_z - m_w than for m_w
- Comparing Z→qq vs. Z→bb mass peaks to estimate size of hadronization effects on m_z-m_w

 $p_{T} > 300 \text{ GeV}$

Quantity	Effect	Size of effect	Understanding needed
			for $\sigma_{m_W} = 10 \text{ MeV}$
m_W	non-pert. corrections	1100 MeV	0.9%
m_W	$W \to q \bar{q}'$ vs. $W \to c \bar{s}$	$80 { m MeV}$	13%
Quantity	Effect	Size of effect	Understanding needed
Quantity	Effect	Size of effect	Understanding needed for $\sigma_{m_W}=10$ MeV
Quantity $m_Z - m_W$	Effect non-pert. corrections	Size of effect 110 MeV	Understanding needed for $\sigma_{m_W}=10$ MeV 9%

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and non-perturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection

 $p_{T} > 300 \text{ GeV}$

Quantity	Effect	Size of effect	
m_W	non-pert. corrections	$1100 { m MeV}$	m _w ^P / m _w ^H ~ 200-1000 MeV
m_W	$W \to q \bar{q}'$ vs. $W \to c \bar{s}$	$80 { m MeV}$	
Quantity	Effect	Size of effect	Ţ
$m_Z - m_W$	non-pert. corrections	110 MeV	[(m _Z ^P -m _W ^P)/(m _Z ^H -m _W ^H) ~ 50-500 MeV
m_Z	$Z \to q\bar{q}$ vs. $Z \to b\bar{b}$	$140 { m MeV}$	$ (m_{Z}^{P}-m_{Z \rightarrow bb}^{P})/(m_{Z}^{H}-m_{Z \rightarrow bb}^{H}) \sim 50-500 \text{ MeV}$

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and non-perturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection

p_T > 300 GeV

Quantity	Effect	Size of effect	
m_W	non-pert. corrections	1100 MeV	m _w r / m _w r ~ 200-1000 MeV
m_W	$W \to q \bar{q}'$ vs. $W \to c \bar{s}$	$80 { m MeV}$	_
Quantity	Effect	Size of effect	
$m_Z - m_W$	non-pert. corrections	110 MeV	$(m_z^P - m_W^P)/(m_z^H - m_W^H) \sim 50-500 \text{ MeV}$
m_Z	$Z \to q\bar{q}$ vs. $Z \to b\bar{b}$	$140 { m MeV}$	$ (m_{Z}^{P}-m_{Z \rightarrow bb}^{P})/(m_{Z}^{H}-m_{Z \rightarrow bb}^{H}) \sim 50-500 \text{ MeV}$

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and non-perturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection

p_T > 300 GeV

Quantity	Effect	Size of effect	
m_W	non-pert. corrections	$1100 { m MeV}$	[m _w ^P / m _w ^H ~ 200-1000 MeV
m_W	$W \to q \bar{q}'$ vs. $W \to c \bar{s}$	$80 { m MeV}$	
Quantity	Effect	Size of effect	
$m_Z - m_W$	non-pert. corrections	110 MeV	$(m_{Z}^{P}-m_{W}^{P})/(m_{Z}^{P}-m_{W}^{P}) \sim 50-500 \text{ MeV}$
m_Z	$Z \to q\bar{q}$ vs. $Z \to b\bar{b}$	$140 { m MeV}$	$[(m_{Z}^{P}-m_{Z \rightarrow bb}^{P})/(m_{Z}^{H}-m_{Z \rightarrow bb}^{H}) \sim 50-500 \text{ MeV}]$

Constraining non-perturbative effects

- Non-perturbative effects strongly reduced by substructure selection and at high jet $\ensuremath{p_{\text{T}}}$
- Pythia-Herwig difference for m_z - m_w reduced to 10-50 MeV with p_T >500 GeV
- Differential measurement of m_z - m_W vs. p_T and substructure promising to contrain non-perturbative effects

Discussion

- The leading theoretical task will be an extraction of nonperturbative corrections, either from other data or selfconsistently with mass measurement itself
 - W boson groomed N₂ and groomed mass (a color singlet)
 - Groomed D₂ Larkoski, Moult, Neill (1708.06760, 1710.00014), Moult, Nachman, Neill (1710.06859)
 - Groomed top quark mass Hoang et al. (1708.02586)
 - A statement on universality of the non-perturbative corrections for hadronic W and Z decays
- Measurement of m_W peak interesting in itself, since it can help to better understand hadronization of boosted W/Z bosons, supporting searches
- HE-LHC would allow access to even higher $p_{\rm T}$ with less non-perturbative effects

Conclusions

- Compared to Iv final state, all-jets final state could avoid experimental systematic uncertainties related to measurement of missing E_T and theoretical uncertainties related to m_T
- Measurement of the mass difference between the W and Z bosons more feasible than the W mass itself
- New trigger strategies needed to reach statistical uncertainty of 30 MeV with 3000/fb HL-LHC data
- Measurement limited by the understanding of non-perturbative contributions to the invariant masses of W→qq and Z→bb
 - Significant improvement required to reach below 100 MeV precision, e.g. by differential measurement of m_{Z} -m_{W} vs. p_{T} and substructure
 - This measurement points to a number of theoretical issues which deserve further thought, and whose resolution would have wider applicability in a number of jet substructure measurements

