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Identifying boosted objects

Two main approaches to identify boosted decays:

1. Manually constructing substructure observables that help distinguish
between different origins of jets.

2. Apply machine learning models trained on large input images or
observable basis.

Aim of this talk: present a method bridging some of the gap between these
two techniques.
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THE LUND PLANE



Lund diagrams

I Lund diagrams in the (ln zθ, ln θ)
plane are a very useful way of
representing emissions.

I Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

I Soft-collinear emissions are emitted
uniformly in the Lund plane
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Lund diagrams

I Features such as mass, angle and momentum can easily be read from
a Lund diagram.

jet mass ≡ m2

p2
t R2 ≈ z1θ2

1

I Substructure algorithms can often also be interpreted as cuts in the
Lund plane.
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Studying jets in the Lund plane

Lund diagrams can provide a useful approach to study a range of jet-related
questions

I First-principle calculations of Lund-plane variables.
I Constrain MC generators, in the perturbative and non-perturbative

regions.
I Brings many soft-drop related observables into a single framework.
I Impact of medium interactions in heavy-ion collisions.
I Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation
patterns in a jet, and study the application of recent ML tools to this picture.
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Lund plane representation

To create a Lund plane representation of a jet, recluster a jet j with the
Cambridge/Aachen algorithm then decluster the jet following the hardest
branch.

1. Undo the last clustering step, defining two subjets j1 , j2
ordered in pt .

2. Save the kinematics of the current declustering
∆ ≡ (y1 − y2)2 + (φ1 − φ2)2 , kt ≡ pt2∆,

m2 ≡ (p1 + p2)2 , z ≡
pt2

pt1+pt2
, ψ ≡ tan−1 y2−y1

φ2−φ1
.

3. Define j � j1 and iterate until j is a single particle.
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Lund plane representation
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Lund representation of a jet

I Each jet has an image
associated with its primary
declustering.

I For a C/A jet, Lund plane is filled
left to right as we progress
through declusterings of hardest
branch.

I Additional information such as
azimuthal angle ψ can be
attached to each point. 0 1 2 3 4 5 6 7 8
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Lund image for a 2 TeV QCD jet
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Detector effects

I Detector effects have significant impact on the Lund plane at angular
scales below the hadronic calorimeter spacing.

I Two enhanced regions corresponding to resolution scale of HCal and
ECal.
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Subjet-Particle Rescaling Algorithm (SPRA)

Mitigate impact of detector granularity using a subjet particle rescaling
algorithm:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.02 0.2 0.5  0.01 0.1 1

16.4<kt<20.1 GeV

ρ
(Δ
R
, 
f
x
e
d

 
k
t)

ΔR

truth

Delphes PF

Delphes PF + SPRA1

Delphes PF + SPRA2

 0.15

 0.2

 0.3

 0.5

 0.1

 1

 0.2  0.5  2  5  20  50  200  500 0.1  1  10  100

Pythia8.230(Monash13)

0.20<ΔR<0.25

ρ
(f
x
e
d

 
Δ
R
, 
k
t)

kt [GeV]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
ln(R/ R12)

2

0

2

4

6

8

ln
(k

t/G
eV

)

chg+ -mjrescaled012(Delphes) / full

pt > 2 TeV

100

Frédéric Dreyer 9/20



APPLICATION TO BOOSTED W TAGGING



Lund images for QCD and W jets

I Hard splittings clearly visible,
along the diagonal line with jet
mass m � mW .

I Depletion of events around W
peak due to shadow cast by
leading emission.
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Tagging jets in the Lund Plane

We will now investigate the potential of the Lund plane for boosted-object
identification.

Two different approaches:

I A log-likelihood function constructed from a leading emission and
non-leading emissions in the primary plane.

I Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet and WW events, looking at CA jets
with pt > 2 TeV.
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Log-likelihood use of Lund Plane

Log-likelihood approach takes two inputs:

I First one obtained from the “leading” emission, defined as first emision
satisfying z > 0.025 (∼ mMDT tagger).

L`(m , z) � ln
(

1
NS

dNS

dmdz

/
1

NB

dNB

dmdz

)
I The second one which brings sensitivity to non-leading emissions.

Ln`(∆, kt ;∆(`)) � ln
(
ρ(n`)S

/
ρ(n`)B

)
Overall log-likelihood signal-background discriminator for a given jet is then
given by

Ltot � L`(m(`) , z(`)) +
∑
i,`

Ln`(∆(i) , k(i)t ;∆(`)) +N(∆(`))
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Tagging with LL method

I Compare the LL approach
in specific mass-bin with
equivalent results from the
Les Houches 2017 report
(arXiv:1803.07977).

I Substantial improvement
over best-performing
substructure observable.
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Machine Learning applied to the Lund plane

A variety of ML methods can be applied to the Lund plane in order to
construct efficient taggers.

We will investigate three approaches:

I Convolutional Neural Networks (CNN) applied on 2D Lund images.
I Deep Neural Networks (DNN) applied on the sequence of

declusterings.
I Long Short-Term Memory (LSTM) networks applied on the sequence of

declusterings.
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CNN on Lund images for W tagging

I Lund images perform
particularly well at high
transverse momentum,
where W → qq is most
separated on Lund plane.

I Performance on par with LL
method, better than regular
jet images at low
efficiencies.
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DNN with the Lund plane

I Applying DNN directly to
the sequence of
declusterings of the hardest
branch.

I Inputs are IRC safe as long
as there is a cutoff in
transverse momentum.

I Results very similar to
previous CNN approach.
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Recurrent networks with a Lund plane

I Jets generally associated with a clustering trees, where
each node contains similar type of information.

I Particularly well-adapted for recurrent networks, which
loop over inputs and use the same weights.

I For each declustering node, we consider the inputs{
ln(R/∆), ln(kt/GeV)

}
I In practice, we will use Long Short-Term Memory

(LSTM) networks, which can retain dependencies over
widely separated points.

Figure from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs for jet tagging

I LSTM network substantially
improves on results
obtained with other
methods.

I Large gain in performance,
particularly at higher
efficiencies.
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Sensitivity to non-perturbative effects

I Performance compared to resilience to MPI and hadronisation corrections.
I Vary cut on kt , which reduces sensitivity to the non-perturbative region.
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CONCLUSIONS



Conclusions

I Discussed a new way to study and exploit radiation patterns in a jet
using the Lund plane.

I Lund kinematics can be used as inputs for W tagging with a range of
methods:
I Log-likelihood function.
I Convolutional neural networks.
I Recurrent and dense neural networks.

Simple LL approach can match performance obtained with recent ML
methods.

I While ML can achieve high performance, one needs to mindful of
resilience to poorly modeled contributions and systematic uncertainties.

Wide range of experimental and theoretical opportunities brought by
studying Lund diagrams for jets. A rich topic for further exploration.

Frédéric Dreyer 20/20



BACKUP SLIDES



Analytic study of the Lund plane

To leading order in perturbative QCD and for ∆ � 1, one expects for a
quark initiated jet
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I Lund plane can be calculated
analytically.

I Calculation is systematically
improvable.
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Non-perturbative effects

I Hadronisation corrections appear at the bottom of the Lund plane,
below ln kt ∼ 0.5.

I Underlying event leads to changes in the large angles region.
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Non-perturbative effects

I Hadronisation corrections appear at the bottom of the Lund plane,
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Secondary Lund plane

I Secondary Lund planes are ignored: some information is therefore
lost, but still achieves good performance.

I Limitation can be overcome by extending the methods discussed to
include secondary planes as inputs, which is relevant at lower pt ’s.
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Secondary Lund plane

I Secondary Lund planes are ignored: some information is therefore
lost, but still achieves good performance.

I Limitation can be overcome by extending the methods discussed to
include secondary planes as inputs, which is relevant at lower pt ’s.
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Subjet-Particle Rescaling Algorithm (SPRA)

Mitigate impact of detector granularity using a subjet particle rescaling
algorithm:

I Recluster Delphes particle-flow objects into subjets using C/A with
Rh � 0.12.

I Taking each subjet in turn, scale each PF charged-particle (h±) and
photon (γ) candidate that it contains by a factor f1

f1 �

∑
i∈subjet pt ,i∑

i∈subjet(h± ,γ) pt ,i
,

and discard the other neutral hadron candidates.
I If subjet doesn’t contain photon or charged-particle candidates, retain

all of the subjet’s particles with their original momenta.

Recluster the full set of resulting particles (from all subjets) into a single
large jet and use it to evaluate the mass and Lund plane.
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Log-likelihood use of Lund Plane: leading emission

Log-likelihood approach takes two inputs:

I First one obtained from the “leading” emission.
I The second one which brings sensitivity to non-leading emissions.

Leading emission is determined to be the first emission in the Lund
declustering sequence that satisfies z > 0.025 (∼ mMDT tagger)

Define a L` log likelihood function

L`(m , z) � ln
(

1
NS

dNS

dmdz

/
1

NB

dNB

dmdz

)
where the ratio of dNS/B

dmdz is the differential distribution in m and z of the
leading emission for signal sample (background) with NS(NB) jets.
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Log-likelihood use of Lund Plane: non-leading emissions

Non-leading (n`) emissions within the primary Lund plane are incorporated
using a function

Ln`(∆, kt ;∆(`)) � ln
(
ρ(n`)S

/
ρ(n`)B

)
where ρ(n`) is determined just over the non-leading emissions,

ρ(n`)(∆, kt ;∆(`)) �
dn(n`)emission

d ln kt d ln 1/∆ d∆(`)

/
dNjet

d∆(`)

as a function of the angle ∆(`) of the leading emission.
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Log-likelihood use of Lund Plane: non-leading emissions

Ln` log-likelihood function in a specific bin.
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Log-likelihood use of Lund Plane: full discriminator

Overall log-likelihood signal-background discriminator for a given jet is then
given by

Ltot � L`(m(`) , z(`)) +
∑
i,`

Ln`(∆(i) , k(i)t ;∆(`)) +N(∆(`))

where N � −
∫

d ln∆ d ln kt
(
ρ(`)S − ρ

(`)
B

)
.

Each subjet i in the sum brings information about whether it is in a more
background-like or signal-like part of the Lund plane.

Optimal discriminator if:

I Leading emission correctly associated with W ’s two-prong structure.
I Non-leading emissions are independent from each other.
I Emission patterns for those emissions depend only on ∆(`).
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