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based on Phys. Rev. D 98, 011502(R) [published yesterday!]
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Motivation

Usual paradigm: train in simulation, test on data.
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It data and simulation differ, this is sub-optimal



Motivation, continued
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—specially important for
deep learning using subtle
features = hard to mode
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J. Barnard, E. Dawe, M. Dolan, N. Rajcic,
Phys. Rev. D 95 (2017) 014018



Solution 1: Use class proportions

How did we make this plot? &8
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dijets = fq x Q + (1-fq) x G 14
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two equations, two unknowns (Q, G) ¢
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We often know 1, g 2

(from ME + PDF) much better than o
full radiation pattern inside jets.
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This doesn’'t work well when you have more than 2

observables because the temp

lates become sparse.

L = a/(a+g)



Method 1: Learn from Proportions
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Mixed Sample 1 Mixed Sample 2

LoLiProp

Learning from
Label Proportions

Solution: Train using
class proportions. | N ' (z;)
Work “on average”  Jweak = argmin g .gn_, o 1j¢ Z N Y

1=1

L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145



N.B. Don’t need 100% fraction accuracy ;
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Even though the
proportions are required
as input, if they are
slightly wrong, you can
end up with the correct
classifier.

gluino vs. Z+jets -
using LLP

=
Qo

T
4

=
@)
T

=

@)

T

I — — —
I
|

—  Fully supervised (original) .

True positive rate
-
\'l
|
]

— Weakly supervised (original)
Fully supervised (mis-modeled)  _

| — -  Weakly supervised (mis-modeled)

04l o
10° 10*  10° 107 100 10°

False positve rate

T. Cohen, M. Freytsis, B. Ostdiek,https://arxiv.org/abs/1706.09451
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Works in low-dimensions
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Works in low-dimensions ... for g/g

Given the data/MC disagreement from the first slide, this is
what you might expect in terms of the performance difference.
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A note about training statistics
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how different are the proportions for the two mixed samples



CWola

Classification
Without Labels

Solution: Train

directly on data using

mixed samples

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51



Works in low-dimensions
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A note about training statistics
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As with LLP, need
sufficient effective
statistics

Can’t learn when
the two proportions
are the same.



Methods Overview

Property

LLP CWolLa

Compatible with any trainable model
No training modifications needed
Training does not need fractions
Smooth limit to full supervision
Works for > 2 mixed samples
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Next step: what about high dim.?

after Pixel Standardization

gluons

There are many O(1)-dimensional
ML problems for jets, but since
the full radiation pattern is higher
dimensional, need to go to bigger!
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Translated Azimuthal Angle ¢

Translated Pseudorapidity 7

after Pixel Standardization

quarks
:ﬁ

Translated Pseudorapidity 7

We'll use jet Images as a
testing ground, still focusing
on quarks versus gluons.

Translated Azimuthal Angle ¢

P. Komiske, E. Metodiev, M. Schwartz, https://arxiv.org/pdf/1612.01551.pdf


https://arxiv.org/pdf/1612.01551.pdf

Some Technical Details

The CWolLa approach works out-of-the box - can use well-
tested CNN architecture with usual cross-entropy loss.

On the other hand, LLP requires signiticant work on
the technical implementation / optimization.
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Works in many-dimensions!
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P. Komiske, E. Metodiev, BPN, M. Schwartz, Phys. Rev. D 98, 011502(R), arXiv:1801:10158



A note about training statistics
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Conclusions and Outlook

Weak supervision is a new & exiting paradigm for training
classitiers. We can learn directly from nature!

This is particularly important for jet physics, where there
are concerns about mis-modeling. We have shown that
the methods work even for high-dimensional data.
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To see how else these ideas could be used, see
Jack’'s CWola hunting talk and Eric’s Jet Topics talk






Backup: Topology Dependence

Learning Sample AUC
Z+jet vs. dijets [0.8626 £ 0.0020
CWol.a Artificial Z 4+ q/g|0.8621 + 0.0019
TP Z+jet vs. dijets |0.8544 £ 0.0019
Artificial Z + ¢/¢|0.8549 4+ 0.0018
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