Learning to Classify from Impure Samples with High-Dimensional Data based on Phys. Rev. D 98, 011502(R) [published yesterday!]

Patrick Komiske, Eric Metodiev, <u>Benjamin Nachman</u>, Matt Schwartz

...building on work also in collaboration with Lucio Dery, Francesco Rubbo, Ariel Schwartzman, Jesse Thaler

Motivation

Usual paradigm: train in simulation, test on data.

2

If data and simulation differ, this is **sub-optimal**!

Motivation, continued

J. Barnard, E. Dawe, M. Dolan, N. Rajcic, Phys. Rev. D 95 (2017) 014018

Especially important for **deep learning** using subtle features → hard to model!

3

W boson radiation pattern - same physics, different simulators!

Solution 1: Use class proportions

How did we make this plot?

dijets = $f_q \times Q + (1-f_q) \times G$ Z+jets = $g_q \times Q + (1-g_q) \times G$

two equations, two unknowns (Q, G)

We often know f, g (from ME + PDF) much better than full radiation pattern inside jets.

]18 ∉ّے 0.9 16 ΔΤΙ Δ.S Discriminant for Data-Driven Tagger 0.8 L dt = 4.7 fb⁻¹, \sqrt{s} = 7 TeV 14 anti-k, R=0.4, $\ln l < 0.8$ 0.7 12 160 GeV<p <210 GeV 0.6 10 0.5 quark vs gluon 8 0.4 jets in data 6 0.3 4 0.2 2 0.1 0 0 0.05 0.150.1 0 **Track Width**

4

= d/(d+g

This doesn't work well when you have more than 2 observables because the templates become sparse.

Method 1: Learn from Proportions

5

L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145

N.B. Don't need 100% fraction accuracy

Even though the proportions are required as input, if they are slightly wrong, you can end up with the correct classifier.

6

T. Cohen, M. Freytsis, B. Ostdiek, https://arxiv.org/abs/1706.09451

Works in low-dimensions

Given the data/MC disagreement from the first slide, this is what you might expect in terms of the performance difference.

A note about training statistics

9

how different are the proportions for the two mixed samples

Method 2: Learning without Proportions

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51

Works in low-dimensions

0.6

0.8

0.5^L

0.2

As with LLP, need sufficient effective statistics

0.8

 $f_{1} (= 1 - f_{2})$

0.6

0.4

Can't learn when the two proportions are the same.

Methods Overview

Property	\mathbf{LLP}	CWoLa
Compatible with any trainable model	\checkmark	\checkmark
No training modifications needed	X	\checkmark
Training does not need fractions	X	\checkmark
Smooth limit to full supervision	X	\checkmark
Works for > 2 mixed samples	\checkmark	?

Next step: what about high dim.?

There are many O(1)-dimensional ML problems for jets, but since the full radiation pattern is higher dimensional, need to go to bigger!

We'll use jet images as a testing ground, still focusing on quarks versus gluons.

The CWoLa approach works out-of-the box - can use welltested CNN architecture with usual cross-entropy loss.

On the other hand, LLP requires significant work on the technical implementation / optimization.

$$\ell_{\text{WMSE}} = \sum_{a} \left(f_a - \frac{1}{N} \sum_{i=1}^{N} h(\mathbf{x}_i) \right)^2 \qquad \ell_{\text{WCE}} = \sum_{a} \text{CE} \left(f_a, \frac{1}{N} \sum_{i=1}^{N} h(\mathbf{x}_i) \right)$$

Works in many-dimensions!

16

P. Komiske, E. Metodiev, **BPN**, M. Schwartz, Phys. Rev. D 98, 011502(R), arXiv:1801:10158

A note about training statistics

18

Weak supervision is a new & exiting paradigm for training classifiers. We can learn directly from nature!

This is particularly important for jet physics, where there are concerns about mis-modeling. We have shown that the methods work even for high-dimensional data.

To see how else these ideas could be used, see Jack's CWoLa hunting talk and Eric's Jet Topics talk

Backup: Topology Dependence

Learning	Sample	AUC	
CWoLa	Z+jet vs. dijets Artificial $Z + q/g$	$\begin{array}{c} 0.8626 \pm 0.0020 \\ 0.8621 \pm 0.0019 \end{array}$	
LLP	Z+jet vs. dijets Artificial $Z + q/g$	$\begin{array}{c} 0.8544 \pm 0.0019 \\ 0.8549 \pm 0.0018 \end{array}$	

Timing

