
Patrick Komiske, Eric Metodiev, 
Benjamin Nachman, Matt Schwartz

Learning to Classify from Impure 
Samples with High-Dimensional Data

…building on work also in collaboration with Lucio Dery, 
Francesco Rubbo, Ariel Schwartzman, Jesse Thaler

based on Phys. Rev. D 98, 011502(R) [published yesterday!] 



�2Motivation

L 
= 

q/
(q

+g
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Track Width
0 0.05 0.1 0.15

trkn

0
2
4

6
8

10
12
14

16
18

 SimulationATLAS
Discriminant for MC-Based Tagger

 = 7 TeVsPythia MC11,  
| < 0.8η R=0.4, |tanti-k

<210 GeV
T

160 GeV<p

L 
= 

q/
(q

+g
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Track Width
0 0.05 0.1 0.15

trkn

0
2
4

6
8

10
12
14

16
18

ATLAS
Discriminant for Data-Driven Tagger

 = 7 TeVs, -1 L dt = 4.7 fb∫
| < 0.8η R=0.4, |tanti-k

<210 GeV
T

160 GeV<p

Usual paradigm: train in simulation, test on data.

If data and simulation differ, this is sub-optimal!

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data



�3Motivation, continued 5

Figure 3: This figure shows the W-jet image di↵erences
between the default PYTHIA shower and the alternate VINCIA

shower in PYTHIA (top left), the default SHERPA shower (top
right), the default HERWIG angular shower (bottom left) and
the HERWIG dipole shower (bottom right). The plots have been
individually normalised.

To gain an understanding of the systematic uncer-
tainties in using networks trained on simulated data,
we study the behaviour of networks across a variety of
di↵erent generators and parton showers which all provide
an adequate description of current LHC data. We assume
that given a number of di↵erent ROC curves derived from
di↵erent generators and parton showers, the envelope of
these curves provides an approximate uncertainty band
associated with training the network on simulated, rather
than real, data.

Recently, Ref. [48] has studied parton shower uncer-
tainties in HERWIG 7. They divide the uncertainties into
a number of classes: numerical, parametric, algorithmic,
perturbative and phenomenological. Numerical uncer-
tainties can be decreased by increasing the number of
events, while parametric uncertainties are those external
to the MC generator: masses, couplings, PDFs and
so forth. The focus of our work in this section is on
algorithmic uncertainties, those due to di↵erent choices
of parton shower algorithm. The authors of Ref. [48]
focus on perturbative and phenomenological uncertain-
ties, which are from truncation of expansion series and
parameters deriving from non-perturbative models. Our
work is more in the spirit of the ‘Towards parton shower
variations’ contribution to the 2015 SM Les Houches
Proceedings [49]. Previous studies also exist within the
HERWIG framework on the implications of MC uncer-
tainties on jet substructure in the context of Higgs
searches [50].

We generate background and signal events with

three of the most widely used MC generators:
PYTHIA 8.219 [41], SHERPA 2.0 [51, 52] and HERWIG 7.0 [53,
54]. For PYTHIA 8 we study both the default shower
and the VINCIA shower [55, 56], and for HERWIG we
include both the default (angular ordered) and dipole
showers [57, 58], giving us five di↵erent parton shower
models to study.
The default HERWIG shower (known as QTilde) is based

on 1 ! 2 splittings using the DGLAP equations, with
an angular ordering criterion [59]. The SHERPA shower is
based on a Catani-Seymour dipole formalism [60]. In this
case one particle of the dipole is the emitter which under-
goes the splitting, while the other is a spectator which
compensates for the recoil from the splitting and ensures
that all particles remain on their mass-shells throughout
the shower, leading to easier integration with matching
and merging techniques. The default shower in PYTHIA 8
is also a dipole style shower [61], ordered in transverse
momentum.
While parton showers have traditionally been based

upon partonic DGLAP splitting functions, another possi-
bility is to consider colour-connected parton pairs which
undergo 2 ! 3 branchings (note that this is distinct
from Catani-Seymour dipoles used in SHERPA, where one
parton is still an emitter, and the other recoils). In
these so-called antenna showers, the 2-parton antenna
is described with a single radiation kernel. This has the
advantage, for instance, of explicitly including both the
soft and collinear limits. We use the recently released
VINCIA [55, 56] plug-in for PYTHIA 8 as a representative
antenna shower.
These event generators also provide di↵erent treat-

ments of the soft radiation from the underlying event
which accompanies each hard partonic scattering. They
also possess di↵erent implementations of the parton-to-
hadron fragmentation process being based either around
cluster fragmentation ideas (HERWIG and SHERPA) or the
Lund string model (PYTHIA), giving us a wide range of
QCD-related e↵ects to probe. To incorporate detector
e↵ects such as smearing we pass all events through
the Delphes 3 detector simulator [42]. In the studies
presented here, our baseline shower is PYTHIA 8 with its
default settings.
We construct average jet images for all five di↵erent

generators and showers under investigation, and then
subtract the default PYTHIA average jet image in order
to see the di↵erences in the average radiation patterns.
The results are shown in Fig. 3 for the W-jet signal. We
have normalised the intensity di↵erences of the pixels so
that red indicates a region of excess and blue a deficit
relative to the PYTHIA default. While the VINCIA is
roughly similar to the PYTHIA default, the SHERPA and
HERWIG dipole showers exhibit more intense radiation in
the resolved subjets and a substantial deficit in the region
between the subjets. The HERWIG angular shower shows
the opposite, with less radiation in the subjet cores and
more di↵use radiatioon. QCD radiation exhibits similar
features.

Especially important for 
deep learning using subtle 
features → hard to model!

W boson radiation 
pattern - same physics, 

different simulators!
J. Barnard, E. Dawe, M. Dolan, N. Rajcic, 

Phys. Rev. D 95 (2017) 014018
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quark gluonquark vs gluon 
jets in data

How did we make this plot?

dijets = fq x Q + (1-fq) x G
Z+jets = gq x Q + (1-gq) x G

two equations, two unknowns (Q, G)

We often know f, g  
(from ME + PDF) much better than 

full radiation pattern inside jets.

This doesn’t work well when you have more than 2 
observables because the templates become sparse.



�5Method 1: Learn from Proportions

Solution: Train using 
class proportions.  
Work “on average”

Learning from 
Label Proportions

two classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}
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i
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i
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where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.5 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by
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The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

j

is su�cient to collapse the solution space, so long as the distribution p(~x|i; j) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch j. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
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1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145
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�6N.B. Don’t need 100% fraction accuracy

of Fig. 9 show the di↵erential cross sections as a function of the missing energy. The

dashed lines represent the distributions before making the cuts, while the solid lines

are after the cut is made. We see that both networks gain their separating power by

cutting out background with relatively small amounts of missing energy.

5.2 Mismodeling

Armed with these concrete comparisons between weakly and fully supervised net-

works, we will explore an example of mismodeling that would lead to a change in

the fraction labels provided at the training step. In particular, we will see that for

the class of mismodeling e↵ects we study here, the performance of a fully supervised

network degrades, while the weakly supervised networks remain robust.

In order to mock up the e↵ects of this mismodeling, we take the original set of

training and validation events and use the fully supervised network to classify them.

Two tests are then performed and their results are presented in Fig. 10. In the first,

15% of the signal events are chosen at random and artificially mislabeled as back-

ground (left panel). In the second, we perform a phase space swap. Specifically, we

change the labels between the most-signal like 10% of the background events and

the most background-like 15% of the signal events (right panel). These two tests

alter the fractions used for the weakly supervised classification. They simultaneously

change the underlying missing energy and jet momentum distributions for the train-

ing samples in di↵erent ways. The events are then split into subgroups as was done

Figure 10: ROC curves showing the response of the network to mismodeled data. The

mismodeling in the left panel shows the results of taking a random 15 % of the signal

events and labeling them as background before training. The right panel demonstrates

what happens under a phase space swap, where we mislabel the 10% most signal-like

background event and the 15% most background-like signal events. The fully supervised

network trained on the mislabeled data performs much worse at small false positive rates

than when the data is not mislabeled. The weakly supervised network does not rely on

individual event labels, and therefore has essentially no change in performance.
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T. Cohen, M. Freytsis, B. Ostdiek,https://arxiv.org/abs/1706.09451

gluino vs. Z+jets 
using LLP

Even though the 
proportions are required 

as input, if they are 
slightly wrong, you can 
end up with the correct 

classifier. 

https://arxiv.org/abs/1706.09451
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�8Works in low-dimensions … for q/g

results that mention quark/gluon tagging, but there many more analyses that would benefit from a
tagger if a robust technique existed.

The weakly supervised classification strategy is particularly useful for quark/gluon tagging because
the fraction of quark jets for a particular set of events is well-known from parton distribution functions
and matrix element calculations while useful discriminating features have not been computed to high
accuracy and simulations often mis-model the data. To illustrate this concrete example, quark and
gluon jets are simulated and a weakly supervised classifier is trained on the generated event sample.
Unlike real data, in the simulated sample, we also know per-event labels which are used to additionally
train a fully supervised classifier. Events with 2 ! 2 quark-gluon scattering (dijet events) are simulated
using the Pythia 8.18 [16] event generator. Jets are clustered using the anti-k

t

algorithm [17] with
distance parameter R = 0.4 via the FastJet 3.1.3 [18] package. Jets are classified as quark- or gluon-
initiated by considering the type of the highest energy quark or gluon in the full generator event
record that is inside a 0.3 radius of the jet axis. For simplicity, one transverse momentum range is
considered: 45 GeV < pT < 55 GeV. Additionally, there is a pseudo-rapidity requirement that mimics
the usual detector acceptance for charged particle tracking: |⌘| < 2.1. Heuristically, gluons have twice
as much strong-force charge as quark jets, resulting in more constituents and a broader radiation
pattern. Therefore, the following variables are useful for quark/gluon discrimination: the number of
jet constituents n, the first radial moment in pT (jet width) w, and the fraction of the jet pT carried
by the leading anti-kT R = 0.1 subjet f0. The constituents i considered for computing n and w are
the hadrons in the jet with pT > 500 MeV.

(a) (b)

Figure 3: Comparison of ROC curves for quark/gluon jet discrimination using a fully supervised clas-
sifier or a weakly supervised classifier. In (a) the fully and weakly supervised classifiers are trained on
identical simulated data and evaluated on a test sample drawn from the same population. The weakly
supervised classifier matches the performance of the fully supervised one. The curves corresponding
to the three input observables used as discriminant are shown as reference. In (b), the fully supervised
classifier (blue line) is trained on a labeled simulated training sample. The weakly supervised classifier
(red line) is trained on an unlabeled pseudo-data training sample. In both cases, the performance is
evaluated on the same pseudo-data test sample. The ratios to the performance of a fully supervised
classifier trained on a labeled pseudo-data sample are shown in the bottom pad.

A weakly supervised classifier with one hidden layer of size 30 is trained by considering 12 bins
of the distribution of the absolute di↵erence in pseudorapidity between the two jets [19]. The propor-
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Given the data/MC disagreement from the first slide, this is 
what you might expect in terms of the performance difference.
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�9A note about training statistics

Note that the loss for weakly supervised classification is symmetric with respect to swapping the class
assignment, therefore the classifier output for a given training can give higher values for class 0, while
for a di↵erent training it would give higher value for class 1.

As with any machine learning algorithm with inherent randomness, the performance of a weakly
supervised classifier has a stochastic component. This is quantified by retraining the same network
many times with di↵erent random number seeds in each iteration. The interquartile range (IQR)
over the Area Under the Curve (AUC) values for each training is a measure of the spread due to the
inherent randomness. Figure 2 shows the AUC IQR for the toy example with one proportion fixed
to 0.2 and the second proportion scanned from 0.2 to 0.7. The stability improves as the di↵erence
between the class proportions increases. In addition to the performance varying less as the proportions
are further apart, the overall performance quantified by the median AUC (denoted by hAUCi) also
improves (increases). The improvement in the median AUC is not as dramatic as the reduction in
the AUC IQR, but it does suggest that it is (slightly) easier for the machine learning algorithm when
the proportions are very di↵erent2. This makes sense in the context of the two-step intuition-building
paradigm given above: the algorithm can spend more attention on the classification task if it is easier
to extract the class distributions.

Figure 2: Median (solid triangles) and interquartile range (solid dots) of the AUC as a function
of the di↵erence in proportions �y between the two subsets of the training sample. The proportion
corrisponding to one subset is fixed to 0.2, while the other varies. For each point the AUC is com-
puted 100 times on the same test set with di↵erent trainings, each performed with a random weight
initialization. The maximum AUC for each point is also shown (hollow triangles).

3 Example: quark and gluon jet discrimination

Due to the strength of the strong force, there is a plethora of gluon jets produced at the LHC.
However, many processes result in mostly quark jets. Prominent examples include the identification of
hadronically decaying W bosons [10, 11], jets associated with vector boson fusion [12–14], and multi-
quarks resulting from supersymmetry [15]. The references given here are the small number of public

2
Even when the proportions are within few percents, stable performance can be achieved if multiple (> 2) subsets

with di↵erent proportions can be used for training.

– 4 –

how different are the proportions for the two mixed samples
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(Dy smaller = less effective stats)



�10Method 2: Learning without Proportions
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.
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2

complex models with high-dimensional inputs. As a
concrete illustration, we use an image representation
to distinguish the radiation pattern from high energy
quarks from gluons (“jet images” [2]). Convolutional
neural networks (CNNs) are applied to the quark and
gluon jet images, where the dimensionality of the inputs
is O(1000) and simulation mis-modeling issues are a
challenge [26, 39–43]. We find that CWoLa more robustly
generalizes to learning with high-dimensional inputs than
LLP, with the latter requiring careful engineering choices
to achieve comparable performance. Though we use
a particle physics problem as an example, the lessons
about learning from data using mixtures of signal and
background are applicable more broadly.

We begin by establishing some notation and formulat-
ing the problem. Let x represent a vector of observables
(features) useful for discriminating two classes we call
signal (S) and background (B). For example, x might be
the momenta of observed particles, calorimeter energy
deposits, or a complete set of observables [7, 8]. In fully
supervised learning, each training sample is assigned a
truth label such as 1 for signal and 0 for background.
Then the fully supervised model is trained to predict the
correct labels for each training example by minimizing
a loss function. For a su�ciently large training set,
an appropriate model parameterization, and a suitable
minimization procedure, the learned model should ap-
proach the optimal classifier defined by thresholding the
likelihood ratio.

Data collected from a real detector do not come with
signal/background labels. Instead, one typically has two
or more mixtures Ma of signal and background with
di↵erent signal fractions fa, such that the distribution
of the features, pMa(x), is given by:

pMa(x) = fa pS(x) + (1 � fa) pB(x), (1)

where pS and pB are the signal and background distri-
butions, respectively. Weak supervision assumes sample

independence, that Eq. 1 holds with the same distribu-
tions pS(x) and pB(x) for all mixtures. Although in most
situations sample independence does not hold perfectly
(see e.g. Ref. [44]), it is often a very good approximation
(cf. Table II below).

LLP uses any fully supervised classification method
and modifies the loss function to globally match the sig-
nal fraction predicted by the model on a batch of training
samples to the known truth fractions fa. Breaking the
training set into batches, normally done to parallelize
training, takes on a new significance with LLP since the
loss function is evaluated globally on each batch. The
batch size, which for LLP we define as the number of
samples drawn from each mixture during one update of
the model, is a critical hyperparameter of LLP.

The loss functions we use for LLP di↵er from those in
Ref. [36]. Analogous to the mean squared error (MSE)
loss function for fully supervised (or CWoLa) training,

Property LLP CWoLa

Compatible with any trainable model 3 3
No training modifications needed 7 3
Training does not need fractions 7 3
Smooth limit to full supervision 7 3
Works for > 2 mixed samples 3 ?

TABLE I. The essential pros (3), cons (7), and open questions
(?) of the CWoLa and LLP weak supervision paradigms.

we introduce the weak MSE (WMSE) loss for the LLP
framework:

`WMSE =
X

a

 
fa � 1

N

NX

i=1

h(xi)

!2

, (2)

where N is the batch size, a indexes the mixed samples,
and h is the model. Analogous to the crossentropy, we
also introduce the weak cross entropy (WCE) loss:

`WCE =
X

a

CE

 
fa,

1

N

NX

i=1

h(xi)

!
, (3)

where CE(a, b) = �a log b�(1�a) log(1�b). One caveat
we discovered while exploring LLP is that the range of
h(x) must be restricted to [0, 1], otherwise the model falls
into trivial minima of the loss function. We also observe
the e↵ect of model outputs becoming e↵ectively binary at
0 and 1, necessitating additional care to avoid numerical
precision issues.

CWoLa classifies two mixtures, M1 and M2, from each
other using any fully supervised classification method.
The resulting classifier is then used to directly distinguish
the original signal and background processes. Amazingly,
the CWoLa classifier asymptotically (as the amount of
training data increases) approaches an ideal classifier
trained on pure samples [37, 45, 46]. CWoLa does not
require that the fractions fa are known for training (the
fractions on smaller test sets can be used to calibrate the
classifier operating points). The CWoLa framework has
the nice property that as the samples approach complete
purity (f1 ! 0, f2 ! 1) it smoothly approaches the fully
supervised paradigm. CWoLa presently only works with
two mixtures; if more than two are available they can
be pooled at the cost of diluting their purity. The key
features of CWoLa and LLP are compared in Table I.
Note that no learning is possible with either method as
f1 ! f2.

To explore weak supervision methods with high-
dimensional inputs, we simulate Z + q/g events at

p
s =

13 TeV using Pythia 8.226 [47] and create artificially
mixed samples with various quark (signal) fractions.
Jets with transverse momentum pjet

T 2 [250, 275] GeV
and rapidity |y|  2.0 are obtained from final-state,
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Figure 1: The average jet images for 200 GeV Pythia gluon jets (top) and quark jets

(bottom) shown after normalization (left) and after the zero-centering and standardization

(right). Di↵erent linear color scales are used to highlight the important features of each step.

On the left the quark jets have more intensity in the five core pixels whereas the gluon jets are

wider. On the right, the standardization procedure illustrates that quark jets are narrower

and emphasizes the softer outer radiation.

3.2 Network architecture

The deep convolutional network architecture used in this study consisted of three iterations

of a convolutional layer with a ReLU activation and a maxpooling layer, all followed by

a dense layer with a ReLU activation. To predict a binary classification between quarks

and gluons, an output layer of two units with sigmoid activation is fully connected to the

final dense hidden layer. An illustration of the architecture used is shown in Figure 2. The

dropout rate was taken to be 0.25 after the first convolutional layer and 0.5 for the remaining

layers, with spatial dropout (drop entires feature maps) used in the convolutional layers. Each

convolutional layer consisted of 64 filters, with filter sizes of 8⇥8, 4⇥4, and 4⇥4, respectively.

– 7 –

gluons

quarks

There are many O(1)-dimensional 
ML problems for jets, but since 

the full radiation pattern is higher 
dimensional, need to go to bigger!

We’ll use jet images as a 
testing ground, still focusing 

on quarks versus gluons.

https://arxiv.org/pdf/1612.01551.pdf
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The CWoLa approach works out-of-the box - can use well-
tested CNN architecture with usual cross-entropy loss.

On the other hand, LLP requires significant work on 
the technical implementation / optimization.
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complex models with high-dimensional inputs. As a
concrete illustration, we use an image representation
to distinguish the radiation pattern from high energy
quarks from gluons (“jet images” [2]). Convolutional
neural networks (CNNs) are applied to the quark and
gluon jet images, where the dimensionality of the inputs
is O(1000) and simulation mis-modeling issues are a
challenge [26, 39–43]. We find that CWoLa more robustly
generalizes to learning with high-dimensional inputs than
LLP, with the latter requiring careful engineering choices
to achieve comparable performance. Though we use
a particle physics problem as an example, the lessons
about learning from data using mixtures of signal and
background are applicable more broadly.

We begin by establishing some notation and formulat-
ing the problem. Let x represent a vector of observables
(features) useful for discriminating two classes we call
signal (S) and background (B). For example, x might be
the momenta of observed particles, calorimeter energy
deposits, or a complete set of observables [7, 8]. In fully
supervised learning, each training sample is assigned a
truth label such as 1 for signal and 0 for background.
Then the fully supervised model is trained to predict the
correct labels for each training example by minimizing
a loss function. For a su�ciently large training set,
an appropriate model parameterization, and a suitable
minimization procedure, the learned model should ap-
proach the optimal classifier defined by thresholding the
likelihood ratio.

Data collected from a real detector do not come with
signal/background labels. Instead, one typically has two
or more mixtures Ma of signal and background with
di↵erent signal fractions fa, such that the distribution
of the features, pMa(x), is given by:

pMa(x) = fa pS(x) + (1 � fa) pB(x), (1)

where pS and pB are the signal and background distri-
butions, respectively. Weak supervision assumes sample

independence, that Eq. 1 holds with the same distribu-
tions pS(x) and pB(x) for all mixtures. Although in most
situations sample independence does not hold perfectly
(see e.g. Ref. [44]), it is often a very good approximation
(cf. Table II below).

LLP uses any fully supervised classification method
and modifies the loss function to globally match the sig-
nal fraction predicted by the model on a batch of training
samples to the known truth fractions fa. Breaking the
training set into batches, normally done to parallelize
training, takes on a new significance with LLP since the
loss function is evaluated globally on each batch. The
batch size, which for LLP we define as the number of
samples drawn from each mixture during one update of
the model, is a critical hyperparameter of LLP.

The loss functions we use for LLP di↵er from those in
Ref. [36]. Analogous to the mean squared error (MSE)
loss function for fully supervised (or CWoLa) training,

Property LLP CWoLa

Compatible with any trainable model 3 3
No training modifications needed 7 3
Training does not need fractions 7 3
Smooth limit to full supervision 7 3
Works for > 2 mixed samples 3 ?

TABLE I. The essential pros (3), cons (7), and open questions
(?) of the CWoLa and LLP weak supervision paradigms.

we introduce the weak MSE (WMSE) loss for the LLP
framework:

`WMSE =
X

a

 
fa � 1

N

NX

i=1

h(xi)

!2

, (2)

where N is the batch size, a indexes the mixed samples,
and h is the model. Analogous to the crossentropy, we
also introduce the weak cross entropy (WCE) loss:

`WCE =
X

a

CE

 
fa,

1

N

NX

i=1

h(xi)

!
, (3)

where CE(a, b) = �a log b�(1�a) log(1�b). One caveat
we discovered while exploring LLP is that the range of
h(x) must be restricted to [0, 1], otherwise the model falls
into trivial minima of the loss function. We also observe
the e↵ect of model outputs becoming e↵ectively binary at
0 and 1, necessitating additional care to avoid numerical
precision issues.

CWoLa classifies two mixtures, M1 and M2, from each
other using any fully supervised classification method.
The resulting classifier is then used to directly distinguish
the original signal and background processes. Amazingly,
the CWoLa classifier asymptotically (as the amount of
training data increases) approaches an ideal classifier
trained on pure samples [37, 45, 46]. CWoLa does not
require that the fractions fa are known for training (the
fractions on smaller test sets can be used to calibrate the
classifier operating points). The CWoLa framework has
the nice property that as the samples approach complete
purity (f1 ! 0, f2 ! 1) it smoothly approaches the fully
supervised paradigm. CWoLa presently only works with
two mixtures; if more than two are available they can
be pooled at the cost of diluting their purity. The key
features of CWoLa and LLP are compared in Table I.
Note that no learning is possible with either method as
f1 ! f2.

To explore weak supervision methods with high-
dimensional inputs, we simulate Z + q/g events at

p
s =

13 TeV using Pythia 8.226 [47] and create artificially
mixed samples with various quark (signal) fractions.
Jets with transverse momentum pjet

T 2 [250, 275] GeV
and rapidity |y|  2.0 are obtained from final-state,
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complex models with high-dimensional inputs. As a
concrete illustration, we use an image representation
to distinguish the radiation pattern from high energy
quarks from gluons (“jet images” [2]). Convolutional
neural networks (CNNs) are applied to the quark and
gluon jet images, where the dimensionality of the inputs
is O(1000) and simulation mis-modeling issues are a
challenge [26, 39–43]. We find that CWoLa more robustly
generalizes to learning with high-dimensional inputs than
LLP, with the latter requiring careful engineering choices
to achieve comparable performance. Though we use
a particle physics problem as an example, the lessons
about learning from data using mixtures of signal and
background are applicable more broadly.

We begin by establishing some notation and formulat-
ing the problem. Let x represent a vector of observables
(features) useful for discriminating two classes we call
signal (S) and background (B). For example, x might be
the momenta of observed particles, calorimeter energy
deposits, or a complete set of observables [7, 8]. In fully
supervised learning, each training sample is assigned a
truth label such as 1 for signal and 0 for background.
Then the fully supervised model is trained to predict the
correct labels for each training example by minimizing
a loss function. For a su�ciently large training set,
an appropriate model parameterization, and a suitable
minimization procedure, the learned model should ap-
proach the optimal classifier defined by thresholding the
likelihood ratio.

Data collected from a real detector do not come with
signal/background labels. Instead, one typically has two
or more mixtures Ma of signal and background with
di↵erent signal fractions fa, such that the distribution
of the features, pMa(x), is given by:

pMa(x) = fa pS(x) + (1 � fa) pB(x), (1)

where pS and pB are the signal and background distri-
butions, respectively. Weak supervision assumes sample

independence, that Eq. 1 holds with the same distribu-
tions pS(x) and pB(x) for all mixtures. Although in most
situations sample independence does not hold perfectly
(see e.g. Ref. [44]), it is often a very good approximation
(cf. Table II below).

LLP uses any fully supervised classification method
and modifies the loss function to globally match the sig-
nal fraction predicted by the model on a batch of training
samples to the known truth fractions fa. Breaking the
training set into batches, normally done to parallelize
training, takes on a new significance with LLP since the
loss function is evaluated globally on each batch. The
batch size, which for LLP we define as the number of
samples drawn from each mixture during one update of
the model, is a critical hyperparameter of LLP.

The loss functions we use for LLP di↵er from those in
Ref. [36]. Analogous to the mean squared error (MSE)
loss function for fully supervised (or CWoLa) training,

Property LLP CWoLa

Compatible with any trainable model 3 3
No training modifications needed 7 3
Training does not need fractions 7 3
Smooth limit to full supervision 7 3
Works for > 2 mixed samples 3 ?

TABLE I. The essential pros (3), cons (7), and open questions
(?) of the CWoLa and LLP weak supervision paradigms.

we introduce the weak MSE (WMSE) loss for the LLP
framework:

`WMSE =
X
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N

NX

i=1

h(xi)
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, (2)

where N is the batch size, a indexes the mixed samples,
and h is the model. Analogous to the crossentropy, we
also introduce the weak cross entropy (WCE) loss:

`WCE =
X
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CE
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h(xi)
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, (3)

where CE(a, b) = �a log b�(1�a) log(1�b). One caveat
we discovered while exploring LLP is that the range of
h(x) must be restricted to [0, 1], otherwise the model falls
into trivial minima of the loss function. We also observe
the e↵ect of model outputs becoming e↵ectively binary at
0 and 1, necessitating additional care to avoid numerical
precision issues.

CWoLa classifies two mixtures, M1 and M2, from each
other using any fully supervised classification method.
The resulting classifier is then used to directly distinguish
the original signal and background processes. Amazingly,
the CWoLa classifier asymptotically (as the amount of
training data increases) approaches an ideal classifier
trained on pure samples [37, 45, 46]. CWoLa does not
require that the fractions fa are known for training (the
fractions on smaller test sets can be used to calibrate the
classifier operating points). The CWoLa framework has
the nice property that as the samples approach complete
purity (f1 ! 0, f2 ! 1) it smoothly approaches the fully
supervised paradigm. CWoLa presently only works with
two mixtures; if more than two are available they can
be pooled at the cost of diluting their purity. The key
features of CWoLa and LLP are compared in Table I.
Note that no learning is possible with either method as
f1 ! f2.

To explore weak supervision methods with high-
dimensional inputs, we simulate Z + q/g events at

p
s =

13 TeV using Pythia 8.226 [47] and create artificially
mixed samples with various quark (signal) fractions.
Jets with transverse momentum pjet

T 2 [250, 275] GeV
and rapidity |y|  2.0 are obtained from final-state,
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Weak supervision is a new & exiting paradigm for training 
classifiers.  We can learn directly from nature!
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To see how else these ideas could be used, see 
Jack’s CWoLa hunting talk and Eric’s Jet Topics talk

This is particularly important for jet physics, where there 
are concerns about mis-modeling.  We have shown that 

the methods work even for high-dimensional data.
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�20Backup: Topology Dependence
4

Learning Sample AUC

CWoLa
Z+jet vs. dijets 0.8626 ± 0.0020
Artificial Z + q/g 0.8621 ± 0.0019

LLP
Z+jet vs. dijets 0.8544 ± 0.0019
Artificial Z + q/g 0.8549 ± 0.0018

TABLE II. AUCs for training with CWoLa and LLP on Z+jet
and dijet samples as well as on artificial mixtures of Z+g and
Z + q samples. The error given is the interquartile range.
There is no significant di↵erence in classifier performance
between the naturally mixed (Z+jet vs. dijets) samples and
the artificially mixed (Z + q/g) samples with the same signal
fractions.

fdijets = 0.37. The signal and background fractions have
been systematically explored for these and many other
processes in Ref. [54]. As indicated by Table II, there is
no significant di↵erence in performance on the naturally
mixed or artificially mixed samples. Hence, artificially
mixed samples are used in the rest of this study in order
to evaluate weak supervision performance at di↵erent
quark purities.

Fig. 2 compares CWoLa and LLP performance for
various quark/gluon purities as a function of the number
of training samples. Each network is trained using two
samples, one with quark fraction f1 and the other with
quark fraction f2 = 1 � f1. Each point in the figure
is the median of 10 independent network trainings and
the error bars show the 25th and 75th percentiles. Full
supervision performance corresponds to CWoLa with
f1 = 0. The most important takeaway from Fig. 2
is that we have achieved good performance with both
weak supervision methods over a large variety of sample
purities and training sample sizes. We also see that
CWoLa consistently outperforms LLP and continues
to get better as additional training samples are used,
likely a result of the increasingly-populated feature space,
whereas LLP performance tends to level o↵. It should be
noted that given the binary output nature of LLP models,
classifiers trained in this way e↵ectively come with a
working point and sweeping the threshold to produce a
ROC curve may not be ideal. The purity/data tradeo↵
analysis of Fig. 2 can provide valuable information for
practical applications of weak supervision methods in
physics, particularly in cases where more data can be
acquired at the expense of worsening sample purity.

The sensitivity of LLP to di↵erent choices of loss
function and activation function was examined. We
studied the choices of the symmetric squared loss of
Eq. (2) and the weak crossentropy loss of Eq. (3) with
Rectified Linear Unit (ReLU) [55] and ELU activation
functions. We found a significant improvement in LLP
classification performance in using ELU activations in-
stead of ReLU activations, particularly at high signal
e�ciencies. The choice of loss function was found to
be less important than the choice of activation function,

FIG. 2. Classifier performance (AUC) shown for both CWoLa
(solid) and LLP (dashed) trained on two mixed samples
with various signal fractions f1, 1 � f1 as the number of
training data is varied between 100k and 1M. Each training
is repeated 10 times and the 25th, 50th, and 75th percentiles
are shown. The f1 = 0.0 CWoLa curve corresponds to full
supervision. CWoLa outperforms LLP by this metric, though
both methods work quite well.

but minor improvements in AUC were observed with
the WCE loss function over WMSE. We also studied
the dependence of CWoLa on the choice of activation
function and found consistent performance between ELU
and ReLU activations. These results justify our default
choices of ELU activation and WCE loss functions. With
the choice of ELU activation, LLP achieves almost the
same performance to our CWoLa-trained network near
the operating point with equal signal and background
e�ciencies. We suspect this is a result of the tendency
of LLP to output binary predictions (near 0 or 1) rather
than a continuous output that can be easily thresholded.

Lastly, LLP has the potential advantage over the
present implementation of CWoLa that it can naturally
encompass multiple mixed samples with di↵erent puri-
ties. While in principle adding more samples should
help, it is not obvious whether the network will e↵ec-
tively take advantage of them. Indeed, we did not find
significant improvement to LLP when adding additional
samples with intermediate purities, even after significant,
dedicated architecture engineering.

In conclusion, we have shown that machine learning
approaches using very high-dimensional inputs can be
trained directly on mixtures of signal and background,
and therefore on data. This addresses one of the main
objections to the use of modern machine learning in
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non-neutrino particles clustered using the anti-kt algo-
rithm [48] with radius R = 0.4 implemented in FastJet
3.3.0 [49]. Single-channel, 33⇥33 jet images [2, 3, 17] are
constructed from a patch of the pseudorapidity-azimuth
plane of size 0.8 ⇥ 0.8 centered on the jet, treating the
particle pT values as pixel intensities. The images are
normalized so the sum of the pixels is 1 and standardized
by subtracting the mean and dividing by the standard
deviation of each pixel as calculated from the training
set.

All instantiations and trainings of neural networks
were performed with the python deep learning library
Keras [50] with the TensorFlow [51] backend. A CNN
architecture similar to that employed in Ref. [17] was
used: three 32-filter convolutional layers with filter sizes
of 8 ⇥ 8, 4 ⇥ 4, and 4 ⇥ 4 followed by a 128-unit dense
layer. Maxpooling of size 2 ⇥ 2 was performed after
each convolutional layer with a stride length of 2. The
dropout rate was taken to be 0.1 for all layers. Keras
VarianceScaling initialization was used to initialize the
weights of the convolutional layers. Due to numerical
precision issues caused by the tendency of LLP to push
outputs to 0 or 1, a softmax activation function was
included as part of the loss function rather than the
model output layer. Validation and test sets were used
consisting each of 50k 50%-50% mixtures of quark and
gluon jet images. Training was performed with the
Adam algorithm [52] with a learning rate of 0.001 and
a validation performance patience of 10 epochs. Each
network was trained 10 times and the variation of the
performance was used as a measure of the uncertainty.
Unless otherwise specified, the following are used by
default: Exponential Linear Unit (ELU) [53] activation
functions for all non-output layers, the CE loss function
for CWoLa, and the WCE loss function for LLP.

The performance of a binary classifier can be captured
by its receiver operating characteristic (ROC) curve. To
condense the classifier performance into a single number,
we use the area under the ROC curve (AUC). The AUC
is also the probability that the classifier output is higher
for signal than for background. Random classifiers have
AUC = 0.5 and perfect classifiers have AUC = 1.0. We
also confirmed that our conclusions are unchanged when
using the background mistag rate at 50% signal e�ciency
as a performance metric instead.

As previously noted, the LLP paradigm works by
matching the predicted fraction of signal events to the
known fraction for multiple mixed samples. In Ref. [36],
the averaging took place over the entire mixed sample.
Averaging over the entire training set at once is e↵ec-
tively impossible for high-dimensional inputs such as jet
images because the graphics processing units (GPUs)
that are needed to train the CNNs in a reasonable
amount of time typically do not have enough memory
to hold the entire training set at one time. Hence, the
ability to train with batches is highly desirable for using
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FIG. 1. The AUC and training time of CWoLa (solid) and
LLP (dashed) as the batch size is varied. Training times
are measured on an NVIDIA Tesla K80 GPU using CUDA
8.0, TensorFlow 1.4.1, and Keras 2.1.2. AUC is a measure of
classifier performance and is 1 for a perfect classifier and 0.5
for a completely random one.

LLP with high-dimensional inputs.
There are many tradeo↵s inherent with choosing the

LLP batch size. Smaller batch sizes are susceptible to
shot noise in the sense that the actual signal fraction
on that batch may di↵er significantly from the fraction
for the entire mixed sample, an e↵ect which decreases
as the batch size increases. Smaller batch sizes result
in longer training times per epoch (because the full
parallelization capabilities of the GPU cannot be used)
but often require fewer epochs to train. Larger batch
sizes have shorter training times per epoch but typically
require more epochs to train. For CWoLa, the batch
size plays the same role as in full supervision, with
the performance being largely insensitive to it but the
total training time varying slightly. These tradeo↵s are
captured in Fig. 1, which shows both the performance
and training time for CWoLa and LLP models as the
batch size is swept in powers of two from 64 to 16384,
trained on two mixtures with f1 = 0.2 and f2 = 0.8.
The expected independence of CWoLa performance and
the degradation of LLP performance for low batch sizes
can clearly be seen. The training time curves are concave
with optimum batch sizes toward the middle of the swept
region. Based on this figure, we choose default batch sizes
of 4000 for LLP and 400 for CWoLa.

In order to explore a slightly more realistic scenario
than artificially mixing samples from the same dis-
tribution of quarks and gluons, we generate Z + jet
and dijet events with the same generation parameters
and cuts as described previously. These “naturally”
mixed samples have quark fractions fZ+jet = 0.88 and


