Recursive Neural Networks in Jet Tagging at the LHC

Taoli Cheng

University of Chinese Academy of Sciences

July 19, 2018 @ BOOST 2018

partly based on [T. Cheng, arXiv:1711.02633]

Representation & Architecture

Interpretation

Underlying Physics

Representation & Architecture

Interpretation

Underlying Physics

Jet Representations \longleftrightarrow Analysis Tools

Two key choices when tagging jets

How to represent the jet

- Single expert variable
- A few expert variables
- Many expert variables
- Jet images
- List of particles
- Clustering tree
- N-subjettiness basis
- Energy flow polynomials
- Set of particles

How to analyze that representation

- Threshold cut
- Multidimensional likelihood
- Boosted decision tree (BDT), shallow neural network (NN)
- Convolutional NN (CNN)
- Recurrent/Recursive NN (RNN)
- Fancy RNN
- Deep neural network (DNN)
- Linear classification
- Energy flow network

See Ben Nachman's intro talk for more

Jet Representations \longleftrightarrow Analysis Tools

Two key choices when tagging jets

How to represent the jet

- Single expert variable
- A few expert variables
- Many expert variables
- Jet images
- List of particles
- Clustering tree
- N-subjettiness basis
- Energy flow polynomials
- Set of particles

How to analyze that representation

- Threshold cut
- Multidimensional likelihood
- Boosted decision tree (BDT), shallow neural network (NN)
 - Convolutional NN (CNN) Recurrent/Recursive NN (RNN)
- Fancy RNN
- Deep neural network (DNN)
- Linear classification
- Energy flow network

See Ben Nachman's intro talk for more

WHY RECURSIVE NEURAL NETWORKS (RECNN)?

Natural Language Structure

Motivated by:

- problems in image approach: sparsity of jet images (5% 10% active), fixed image size, (information loss from pixelization)
- natural tree-like structure of sequential jet clustering history
- implementation in event-level

Recursive Neural Nets (RecNN)

RecNN for Jets

Motivated by:

- problems in image approach: sparsity of jet images (5% 10% active), fixed image size, (information loss from pixelization)
- natural tree-like structure of sequential jet clustering history
- implementation in event-level

[G. Louppe, K. Cho, C. Becot, K. Cranmer, arXiv: 1702.00748] QCD-Aware Recursive Neural Networks for Jet Physics

Gilles Louppe,¹ Kyunghyun Cho,¹ Cyril Becot,¹ and Kyle Cranmer¹

¹New York University

Recent progress in applying machine learning for jet physics has been built upon an analogy between calorimeters and images. In this work, we present a novel class of recursive neural networks built instead upon an analogy between QCD and natural languages. In the analogy, four-momenta are like words and the clustering history of sequential recombination jet algorithms is like the parsing of a sentence. Our approach works directly with the four-momenta of a variable-length set of particles, and the jet-based tree structure varies on an event-by-event basis. Our experiments highlight the flexibility of our method for building task-specific jet embeddings and show that recursive architectures are significantly more accurate and data efficient than previous image-based networks. We extend the analogy from individual jets (sentences) to full events (paragraphs), and show for the first time an event-level classifier operating on all the stable particles produced in an LHC event.

12

$$d_{ij}^{\alpha} = min(p_{Ti}^{2\alpha}, p_{Tj}^{2\alpha}) \frac{\Delta R_i^2}{P^2}$$

embedding jet information

RecNN & Jet Embedding

* with recursively defined pt-weighed charge, we can include the particle flow information in one variable which is well defined for all the nodes

Workflow

- Measure: Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) of ROC, background rejection rate $@ \epsilon_s = 50\%$
- Particle Flow Identification: one-hot vectors, or pt weighted charge

Quark/Gluon Discrimination

Baseline: BDT (jet mass m/p_T , jet girth $\sum_{i\in Jet} \frac{p_T^i}{p_T^J}r_i$, charged particle count $\#_{charged}$)

For RecNN,

- no particle flow identification
- one-hot vectors
- pt-weighted charge instead

Quark/Gluon Discrimination

Variants

	Variants	AUC	$R_{\epsilon=50\%}$
	Baseline	0.8344	12.9
$\int \left[\mathbf{h}_{l}^{\text{jet}} \right] \rangle$	R=0.7	0.8210	12.4
$\mathbf{h}_{h} = \sigma \left(W_{h} \mid \mathbf{h}_{i}^{-\kappa_{L}} \mid + b_{h} \right)$	$W_h \to R^{q \times 2q}$	0.8268	12.3
$\begin{bmatrix} -\kappa \\ 0 \end{bmatrix} \begin{bmatrix} n & n \\ 1 & k_R \end{bmatrix} \begin{bmatrix} n & n \\ 1 & k_R \end{bmatrix}$	$W_h \to R^{q \times 2q}$ with one-hot	0.8313	13.7
	$\mathbf{x} = (p_T, \eta, \phi)$	0.8291	11.8
	$\mathbf{x} = (\eta, \phi)$	0.8249	11.9
Variants in input	$\mathbf{x} = (p_T)$	0.8264	11.6
information	only one-hot	0.8255	11.9
ΠΙΟΠΙΔΙΟΠ	$\mathbf{x} = (Q_{\kappa=50\%}^{\mathrm{rec}})$	0.8234	11.3

- particle flow identification doesn't help significantly
- the discriminating information for q/g tagging is RecNN mainly reside in the tree structure itself

Variants

	Variants	AUC	$R_{\epsilon=50\%}$
	Baseline	0.8344	12.9
$\left(\begin{bmatrix} \mathbf{h}^{\text{jet}} \end{bmatrix} \right)$	R=0.7	0.8210	12.4
$\mathbf{h}_{k} = \sigma \left(W_{h} \mid \begin{array}{c} \mathbf{h}_{k_{L}} \\ \mathbf{h}^{\text{jet}} \end{array} \mid + b_{h} \right) \longrightarrow$	$W_h \to R^{q \times 2q}$	0.8268	12.3
$\begin{bmatrix} \mathbf{n}_{k_R} \end{bmatrix}$	$W_h \to R^{q \times 2q}$ with one-hot	0.8313	13.7
	$\mathbf{x} = (p_T, \eta, \phi)$	0.8291	11.8
	$\mathbf{x} = (\eta, \phi)$	0.8249	11.9
Variants in input	$\mathbf{x} = (p_T)$	0.8264	11.6
information	only one-hot	0.8255	11.9
Information	$\mathbf{x} = (Q_{\kappa=50\%}^{\mathrm{rec}})$	0.8234	11.3

- particle flow identification doesn't help significantly
- the discriminating information for q/g tagging is RecNN mainly reside in the tree structure itself

Jet Charge

pt weighted jet charge $Q_{\kappa}^{J} = \sum_{i \in J} (\frac{p_{T}^{i}}{p_{T}^{J}})^{\kappa} q_{i}$

Jet Charge

u/d discrimination

RecNNs with pt-weighted charge

* one-hot implementation doesn't work here

For Different Tasks

W Tagging

Top tagging

q/g discrimination

jet charge discrimination

Leads to comparative study

Representation & Architecture

Interpretation

*what has been learnt? Underlying Physics *how it was learnt? Underlying Physics *anything else can be learnt?

Visualisation

Preliminary Results

(in collaboration with Gilles Louppe)

W/QCD Joint Probability Distribution

Sensitivity

Maximum Response Samples

1.00

34

jet images

W/QCD Maximum Response Samples

sensitivity

35

jet images

Maximum Response Samples

36

Output

jet images

Maximum Response Samples

ReLU2

jet images

sensitivity

¿Jet Grooming?

Jet Grooming

"LEARN TO PIVOT" → "LEARN TO GROOM"

We can use the same adversarial strategy to be robust to variations in pileup and underlying event.

- combined with GRU/LSTM gating, the network should learn to ignore parts of the jet that are not robust to these variations
- eg. network will learn a jet grooming/pruning/trimming/... strategy.
- Compare traditional grooming with weights assigned to constituents.

Representation & Architecture

Interpretation

Underlying Physics

Sensitivity

Wrap-up

Representation &

- * Jet Clustering inspired RecNN Framework for (not only) jet tagging
- * Effective, Compact, Transferability
- * Physics-Friendly
- * Nice interpretability
- * Not only a classifier (physics intuition, practical use, and natural structure)

Underlying Physics

Thank you!

Quark/Gluon Discrimination

	Gluon Jet Efficiency (%) at 50 % Quark Jet Acceptance	$200 \mathrm{GeV}$	$1000 {\rm GeV}$
	BDT of all jet variables	5.2*	5.2*
Duthio	Deep CNN without Color	4.8*	4.0*
Fyilla	Deep CNN with Color	4.6*	3.4*
	RecNN without pflow	6.4	4.5
	BDT	9.5	6.2
Delpher	RecNN without pflow	7.8	4.6
Delphes	RecNN with categorical pflow	7.1	4.5
	RecNN with pt-weighted charge	7.8	4.9
Full Sim.	DNN@CMS	$\sim 10.0^{\dagger}$	_

(* data taken from P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, arXiv:1612.01551;
† data taken from CMS Collaboration Collaboration, New Developments for Jet Substructure Reconstruction in CMS)

Performance of slim jet tagging

previous [non particle-based] taggers

was due to track preselection

→ Similar performance to simpler & dedicated architectures

0.5

0.6

0.7

0.8

Light quark efficiency

CMS

√s=13 TeV

better

0.9

Joint Probability Distribution

Top/QCD(1 TeV)

Conditional Probability Distribution

IRC Safety

Table 2. Performance of pre-trained RNN classifiers (without gating) applied to nominal and modified particle inputs. The *collinear1* (*collinear10*) scenarios correspond to applying collinear splits to one (ten) random particles within the jet. The *collinear1-max* (*collinear10-max*) scenarios correspond to applying collinear splits to the highest p_T (ten highest p_T) particles in the jet. The *soft* scenario corresponds to adding 200 particles with $p_T = 10^{-5}$ GeV uniformly in $0 < \phi < 2\pi$ and $-5 < \eta < 5$.

Scenario	Architecture	ROC AUC	$R_{\epsilon=50\%}$
nominal	k_t	0.9185 ± 0.0006	68.3 ± 1.8
nominal	$\mathrm{desc}\text{-}p_T$	0.9189 ± 0.0009	70.4 ± 3.6
collinear1	k_t	0.9183 ± 0.0006	68.7 ± 2.0
collinear1	$\operatorname{desc-} p_T$	0.9188 ± 0.0010	70.7 ± 4.0
collinear10	k_t	0.9174 ± 0.0006	67.5 ± 2.6
collinear10	$ ext{desc-}p_T$	0.9178 ± 0.0011	67.9 ± 4.3
collinear1-max	k_t	0.9184 ± 0.0006	68.5 ± 2.8
collinear1-max	$\operatorname{desc-}p_T$	0.9191 ± 0.0010	72.4 ± 4.3
collinear 10-max	k_t	0.9159 ± 0.0009	65.7 ± 2.7
collinear 10-max	$\operatorname{desc-}p_T$	0.9140 ± 0.0016	63.5 ± 5.2
soft	k_t	0.9179 ± 0.0006	68.2 ± 2.3
soft	$\operatorname{desc-}p_T$	0.9188 ± 0.0009	70.2 ± 3.7
[G. Louppe, K. Cho, C. Becot and K. Cranmer, a			