Boosted W/top tagging in ATLAS

BOOST 2018 / UPMC, Paris / 17 July 2018

Andreas Søgaard on behalf of the ATLAS Collaboration

*Trimming params.: $R_{sub} = 0.2$, $f_{cut} = 5\%$ [0912.1342]. HEPTopTagger uses trimmed C/A jets w. R = 1.5 2

Introduction

- Identifying boosted hadronic resonance decays is guided by
 - precision jet substructure calculations
- and is important for
 - probing top physics
 - searches for physics beyond the SM
- Using trimmed anti-k_t R = 1.0 jets*:
 - Study performance, modelling of W/top taggers in data
 - Present new ideas in jet tagging

Talk by J. Roloff

Boosted jets: Increasing transverse momentum, $p_{\rm T}$

Performance in simulation

ATLAS Run 2 W/top tagging paper (*in prep.*) ATL-PHYS-PUB-2017-004

Two-variable cut-based taggers

- Powerful classification by tagging on combined jet mass (m^{comb}; track ⊕ calo) and additional substructure moment
- Optimise pair-wise combinations at fixed ε_{sig} WP vs. p_T

Machine learning taggers

- Multivariate (MVA) combination of inputs possible with deep neural networks (DNN) and boosted decision trees (BDT)
- For BDT, sequentially adding features improves classification beyond two-variable combinations. Similar inputs for DNN.

Comparison: Cut-based vs. MVA

- For fixed- ε_{sig} WPs vs. jet p_T , MVA taggers (‡) perform similarly, and better than optimised two-variable tagger (+)
 - Ability to use extra information results in better taggers

Alternative top tagging techniques

- HepTopTagger v1 (HTT)
 [0910.5472, 1006.2833]
- Use trimmed C/A w. R = 1.5 to capture entire top decay for $p_T > 200$ GeV
- Test compatibility with 3prong top decay hypothesis
- Tag: m_{HTT} ∈ [140, 200] GeV

- Shower Deconstruction (SD) [1102.3480, 1211.3140]
- Re-cluster 3–6 excl. kt top decay-compatible subjets
- Compare subjets (≈ partons) to parton shower histories:

$$\chi(\{p\}_N) = \frac{\sum_{\text{histories}} P(\{p\}_N | S)}{\sum_{\text{histories}} P(\{p\}_N | B)}$$

Encoding physics
 knowledge (~ME calc.)
 in observable → between
 cut-based and ML taggers

TopoDNN tagger

• Lessons:

- Lower-level inputs can yield more powerful classification [1511.05190, 1603.09349, 1701.08784]
- Greater impact of ML methods for top tagging
- **TopoDNN:** [1704.02124]
 - Top tagging using jet LC topo cluster constituents directly, implemented and evaluated in ATLAS
 - Targeting high-p_T tt

 analysis, so focus on this kinematic regime

TopoDNN tagger

- Using (p_T, η, φ) of **10 leading LC topo cluster constituents** in trimmed large-*R* jet $(m_{\text{cluster}} \rightarrow 0)$
- Preprocessing: translation, rotation, and flip of assumed three-subjet topology

Classification / Top

- Shower deconstruction () most powerful non-ML method
- TopoDNN () improves on "standard" ML taggers () at high p_{T}

Measurements in data

ATLAS Run 2 W/top tagging paper (in prep.)

Overview

- To use taggers for physics, must evaluate uncertainty in data
- Measure W/top tagging efficiency and multijet rejection
- Full ATLAS 2015 2016 dataset, L = 36.1 36.7 fb⁻¹
- W/top tagging efficiency
 - tt decay to single lepton + jets topology
 - W: ∆R(b-jet, large-R jet) > 1.0
 p_T(J) > 200 GeV

- Multijet rejection
 - Dijets: *p*_T(*J*) > 450 GeV
 - γ + jets: p_T(J) > 200 GeV

12

Distributions / Large-*R* jet mass

- Enriched samples of W and top jets in data, before tagging
- Good MC/data agreement; large $t\bar{t}$ modelling uncertainty

Distributions / ML taggers

- Good modelling of ML tagging variables in simulation:
 - (left) High-level **W DNN** in W-enriched selection
 - (right) Low-level TopoDNN in top-enriched selection

W/top tagging efficiency

 Measure signal-like events in data using signal/background templates to fit large-R jet mass distributions for tag pass/fail

W/top tagging efficiency / p_T

- Signal efficiency vs. p_T in MC and data for example taggers
- Tagging scale-factor: $\varepsilon_{data}/\varepsilon_{MC}$, with stat. and syst. uncertainties

W/top tagging efficiency / Pile-up

- Signal efficiency vs. mean number of pile-up interactions (μ) in MC and data for example taggers
- Tagging efficiency robust wrt. pile-up within even stat. uncertainties

Multijet rejection / W: m^{comb} + D₂

- Rejection $1/\varepsilon_{bkg}$ measured directly in signal-subtracted data:
 - Dijet events: Good data/Pythia8 agreement; Herwig++ lower
 - **y + jets:** Both Sherpa, Pythia8 agree within uncertainties

Multijet rejection / Top: TopoDNN

- Larger Herwig++ disagreement for MVA than analytical taggers
- Small downwards trend vs. μ for TopoDNN, but no systematic trend across different tagging variables
- µ-dependence generally well-modelled

New ideas in jet tagging

ATL-PHYS-PUB-2018-011 EXOT-2017-14 ATL-PHYS-PUB-2018-014

Iterative Soft Drop (ISD) multiplicity

- Constituent multiplicity: single most important observable for q/ g jet tagging, but challenged by pile-up contamination
- ISD: Undo clustering steps of C/A jet, counting hard splittings

Constituent subtraction: Subtract ghost $p_T^g = A_g \times \rho$ from consts.

Multi-class jet classification

- Perform multi-class classification of V*/H/top vs. multijets for VLQ search using variable-R reclustered (vRC) jets.
 See also: Talk by F. Guescini
- Train DNN with one classifier score (D_{DNN}) for each of the 4 jet classes, compute per-class likelihoods, e.g. P(V):

$$P(V) = \log_{10} \left(\frac{D_{\text{DNN}}^{V}}{0.9 \cdot D_{\text{DNN}}^{\text{background}} + 0.05 \cdot D_{\text{DNN}}^{t} + 0.05 \cdot D_{\text{DNN}}^{H}} \right)$$

- For multiply-tagged jets, resolve ambiguity by additional classifier variable ratios (see backup)
- Reclustered jets: uncertainties on calibrated input anti-kt R = 0.4 jets can be used directly

Mass-decorrelation / Overview

- Heavy resonance taggers prove powerful in data, MC
- But standard substructure taggers, particularly MVA,
 sculpt the background jet mass distribution to resemble signal peaks
- Problematic if search relies on jet mass spectrum
- Compare five methods for mass-decorrelation

Mass-decorrelation / Methods

Mass-decorrelation / Methods

Andreas Søgaard / University of Edinburgh

Mass-decorrelation / Results

- Simultaneously study
- *x-axis:* classification $1/\epsilon_{bkg}$ @ $\epsilon_{sig} = 50\%$ *y-axis:* mass-decorrelation
 - $1/JSD^* @ \varepsilon_{sig} = 50\%$

(with no mass selection)

- k-NN leads to ~full massdecorrelation
- CSS decorrelates more than DDT, due to no linearity requirement
- Mass-decorrelated MVAs are regularised, allowing for parametrised trade-off.

^{*}JSD = Jensen-Shannon divergence; ~ relative entropy of pass/fail multijet mass distributions. 26

Mass-decorrelation / Results

- Simultaneously study
- *x-axis:* classification $1/\epsilon_{bkg}$ @ $\epsilon_{sig} = 50\%$ *y-axis:* mass-decorrelation $1/JSD^*$ @ $\epsilon_{sig} = 50\%$

(with no mass selection)

- k-NN leads to ~full massdecorrelation
- CSS decorrelates more than DDT, due to no linearity requirement
- Mass-decorrelated MVAs are regularised, allowing for parametrised trade-off.

^{*}JSD = Jensen-Shannon divergence; ~ relative entropy of pass/fail multijet mass distributions. 27

Conclusion

Conclusion

- Highlights of new results for boosted W/top tagging in ATLAS
- Novel high-p_T topocluster-based top-tagging, TopoDNN
- Evaluated taggers in data, providing systematic uncertainties
 - W/top tagging efficiencies and scale factors vs. p_T , μ
 - **Multijet rejection** vs. p_T , μ in two final states
- New ideas: ISD multiplicity and multi-class jet tagging
- Studied various approaches to mass-decorrelated jet tagging
 - Robust decorrelation with fixed-efficiency regression
 - Trade-off between classification and decorrelation with MVAs

Thank you.

W/top tagging / HepTopTagger

(a) Every object encountered in the declustering process is considered a 'substructure object' if it is of sufficiently low mass or has no clustering history.

(b) The mass-drop criterion is applied iteratively, following the highest subjet-mass line through the

clustering history, resulting in N_i substructure ob-

jects.

 $\begin{array}{|c|c|c|} \hline \text{Parameter} & \text{Value} \\ \hline m_{\text{cut}} & 50 \; GeV \\ \hline m_{\text{filt}} & 0.25 \\ \hline N_{\text{filt}} & 5 \\ \hline f_W & 15\% \\ \hline \end{array}$

ATLAS-CONF-2017-064

(c) For every triplet-wise combination of the substructure objects found in (b), recluster the constituents into subjets and select the N_{subjet} leading p_{T} subjets, with $3 \leq N_{\text{subjet}} \leq N_i$ (here, $N_{\text{subjet}} =$ 5).

(d) Recluster the constituents of the N_{subjet} subjets into exactly three subjets to make the top candidate for this triplet-wise combination of substructure objects.

W/top tagging / Jet labelling

W/top tagging / Chosen ML inputs

	W-Boson Tagging		Top-Quark Tagging	
Observable	BDT	DNN	BDT	DNN
$m^{ m comb}$	0	0	0	0
p_{T}	0	0	0	0
e_3			0	0
C_2		0		0
D_2	0	0		0
$ au_1$	0			0
$ au_2$			0	0
$ au_3$				0
$ au_{21}$	0	0	0	0
$ au_{32}$			0	0
$R_2^{ m FW}$	0	0		
\mathcal{P}	0	0		
a_3	0	0		
A	0	0		
$Z_{ ext{cut}}$		0		
$\sqrt{d_{12}}$	0	0	0	0
$\sqrt{d_{23}}$			0	0
KtDR	0	0		
Q_w			0	0

Table adapted from ATLAS-CONF-2017-064

Classification / W

- Two-variable optimised tagger (•) improves on $D_2 + m$ -cut ()
- MVA taggers () outperform cut-based taggers across p_T

ISD multiplicity

ATL-PHYS-PUB-2018-011

ISD Multiplicity – Number of Splittings while Grooming

- 1. Undo the last clustering step.
- 2. If $\Delta R_{ij} < \Delta R_{cut}$, the algorithm terminates.
- 3. If $z_{ij} > z_{cut} (\Delta R_{ij}/R)^{\beta}$, increment the ISD constituent multiplicity by one and iterate on the harder proto-jet. If not, iterate on the harder proto-jet without incrementing.

The parameters z_{cut} , β , and ΔR_{cut} are algorithm-specific. For the ISD Multiplicity, the parameters $z_{\text{cut}} = 0.007$, $\beta = -1$, and $\Delta R_{\text{cut}} = 0$ were chosen, which are the values found to maximize the quark-versus-gluon discrimination power while maintaining calculability from Ref. [20].

Multi-class jet tagging

Multi-class jet tagging

• **Double-tagged:** Likelihood ratios for each tagged class

41

 $\log_{10}(D_{\text{DNN}}^{V} / (0.5 D_{\text{DNN}}^{H} + 0.5 D_{\text{DNN}}^{t}))$

Mass-decorrelation / DDT

 Remove mean bias of τ₂₁ by performing linear fit vs. ρ^{DDT} in restricted range for multijets. Choice of base substructure variable limited by linearity requirement.

$$\tau_{21}^{\rm DDT} = \tau_{21} - a \times (\rho^{\rm DDT} - 1.5)$$

Mass-decorrelation / k-NN

 Use k-nearest neighbour regression to fit fixed-percentile value of D₂ for multijets as a function of (log p_T, ρ) to remove non-linear correlations for fixed ε_{bkg}.

$$D_2^{k-\rm NN} = D_2 - D_2^{(16\%)}$$

Mass-decorrelation / CSS

 D₂ distribution at jet mass m is convoluted to be coherently closer to distribution at reference mass m₀. Removes massdependence for higher-order moments than mean.

Mass-decorrelation / ANN

• Pit neural network classifier against adversary network, tasked with inferring the jet mass from the classifier output and penalising the classifier if this is possible. Trade-off controlled by parameter λ .


```
\min_{\theta_{\rm clf}} \max_{\theta_{\rm adv}} L_{\rm clf}(\theta_{\rm clf}) - \lambda L_{\rm adv}(\theta_{\rm clf}, \theta_{\rm adv})
```

x: inputs, 10 substructure momentsy: target, jet label

Χ

a: aux. info., log p_T **d:** decorrelation var(s)., jet *m*

Mass-decorrelation / uBoost

 Using adaptive boosting of decision tree to ensure uniform efficiency at fixed level ε across m in addition to standard classification boosting. Trade-off controlled by uniforming rate α.

