

Christopher Young, CERN

16th July 2018

CERN

Introduction

- Jets are very important to almost all analyses at the LHC.
- ▶ While this workshop clearly focusses on boosted object reconstruction here I will cover the reconstruction and calibration of the R = 0.4 Anti-k_t jets that are used as standard by ATLAS analyses as well as the reconstruction of *missing transverse momentum*.
- ▶ Jets are used from 20 GeV to 3.8 TeV and up to $|\eta| < 4.5$ by analyses with their uses varying from jet vetoes, signal enhancement through their presence to unfolding their kinematic distributions.
- Missing transverse momentum, E^{miss}_T, is used to infer the existence of weakly interacting neutral particles that pass through the detector undetected, for example, neutrinos or other more exotic particles.
- The reconstruction of this requires the accurate measurement of all objects in the event to check if they balance in the transverse plane.

Christopher Young, CERN

The ATLAS Detector

- The ATLAS detector multi-purpose detector: inner tracker, EM + HAD calorimeters, muon spectrometer.
- Magnetic fields provided by thin solonoid (inside calorimeters) and outer toroid for muon measurements.
- The calorimeters are particularly important for jet measurements.
 - ▶ $>\sim$ 9 interaction lengths gives good jet containment.
 - ▶ High granularity: 2nd EM layer 0.025×0.025, HAD barrel 0.1×0.1.

Christopher Young, CERN

Topocluster Reconstruction arXiv:1603.02934

- Calorimeter object reconstruction starts with *topological clustering* of calorimeter cells.
- Cells 4σ above the noise (inc. pile-up) seed clusters.
- Neighboring cells 2σ above the noise are added iteratively.
- Finally a surrounding layer of cells is added.
- A splitting algorithm is then run to split local minima.
- For large-R jets these are then calibrated to account for EM and HAD differences, dead material and out-of-cluster deposits.

Christopher Young, CERN

Pile-Up in the Calorimeter arXiv:1703.10485

- Pile-up is the resulting signals from other interactions both from the same crossing and residual signals from close-by crossings.
- While the tracker can distinguish pile-up, the additional energy in the calorimeter pollutes jet measurements and also results in the reconstruction of additional jets.

Christopher Young, CERN

Particle Flow Reconstruction arXiv:1703.10485

- Particle Flow reconstruction starts from tracks and topological clusters.
- Tracks where the tracker is expected to be much better than calo are selected;
 - Low p_T- better tracker resolution
 - Not in very dense areas of calorimeter easier to do the subtraction
- The energy deposited by tracks is subtracted cell-by-cell.
- Objects built from remaining clusters and hard-scatter tracks.

Christopher Young, CERN

Jet Reconstruction and Calibration Sequence arXiv:1703.09665

- ▶ Jets are reconstructed using the Anti- k_t algorithm with radius parameter R = 0.4 although we are also looking at other radii.
- The inputs are either topological clusters at the electromagnetic scale (we only use the calibrated clusters for sub-structure) or particle flow objects tracks from the hard-scatter and remaining calorimeter clusters.
- Below is the full calibration sequence I will go through each step in turn.

Christopher Young, CERN

Pile-Up Correction arXiv:1703.09665

- ► To correct for pile-up falling within the jet cone first a *ρ* × *A* subtraction is performed.
- $\blacktriangleright~\rho$ is the average pile-up density per unit area determined in the region $|\eta|<$ 2.0
- An additional correction is then applied based on the number of vertices and µ to account for residual pile-up dependence.

Christopher Young, CERN

MC-based Calibration and GSC arXiv:1703.09665, ATL-PHYS-PUB-2018-013

- A Monte Carlo based calibration corrects the jet energy to the truth jet scale - particle level jets formed from stable hadrons.
- \blacktriangleright Following this the $\eta\,$ of jets is corrected to account for biases due to cracks in the calorimeter.
- The next stage of the calibration is to improve the resolution and reduce quark/gluon differences by removing the dependence on fraction of energy in different calorimeter layers, number of tracks, track width and muon spectrometer hits (which accounts for punch-through).
- Now looking at using Machine Learning for this see A. Cukierman's poster!

CERN

Christopher Young, CERN

η -Intercalibration _{JETM-2017-008}

- Different detector technologies are utilized as a function of $|\eta|$.
- To ensure that the data-to-MC ratio is uniform as a function of η di-jet events are used as they are expected to balance in the transverse plane.
- \blacktriangleright Events are selected with no 3rd jets and large $\Delta\phi\,$ but still some truth imbalance remains.
- The modeling of this imbalance forms one of the major systematics for the forward JES.
- \blacktriangleright The size of the corrections required is $\sim 5\%$ in the most forward regions.

Christopher Young, CERN

In situ V+jet Calibration arXiv:1703.09665

- ▶ The energy scale of electrons, muons and photons is very well known.
- A boson (Z → II or γ) recoiling off a jet should balance in p_T.
- We look at both the direct balance between the jet and boson and also the *Missing E_T Projection Fraction* (MPF) method where we look at the full hadronic recoil against the boson.
- The methods are found to be compatible and one is chosen as they are not statistically independent.

Christopher Young, CERN

Multi-Jet Balance + Combination arXiv:1703.09665, JETM-2017-003

- The V+jet balance techniques run out of statistics around 1 TeV so a different technique is required beyond this.
- ► The balance of a single leading jet against a multi-jet system is used to extend the data driven techniques to higher *p*_T.
- The methods are then all combined to form the final JES in situ correction and its uncertainty.
- The methods are found to agree well in the regions of overlap and the independence of their uncertainties reduce the overall level of uncertainty.

Christopher Young, CERN

Jet Energy Scale Uncertainties JETM-2017-003

- The full JES uncertainties contain the previously described in situ uncertainties as well as additional uncertainties for the modeling of pile-up, the flavour composition and response differences between generators, and finally single particle response at the highest p_T.
- At low p_T the pile-up uncertainties dominate, then the flavour response of gluon jets which are not directly probed by the *in situ* measurements, then the photon energy scale and finally single particle uncertainties.
- \blacktriangleright At high $|\eta|$ we are dominated by modeling issues of the balance between forward and central jets.

CERN

14/22

Christopher Young, CERN

Jet Energy Resolution Measurement (Run I) ATLAS-CONF-2015-037

- These same balance distributions (γ-jet, Z-jet and di-jet) can be used to extract the Jet Energy Resolution.
- The truth level imbalance of the systems is corrected for by subtracting it in quadrature.
- The results from the 3 systems are combined with a measurement of the noise from pile-up taken from the fluctuations seen in random cones in unbiased data.

Christopher Young, CERN

Pile-Up Effect on Jet Resolution arXiv:1703.10485, ATLAS-CONF-2017-065

- ▶ Pile-up falling within a jet cone affects the scale and also the resolution.
- While the pile-up corrections correct for the former effect they cannot eliminate the latter such that the resolution grows with increasing μparticularly at low p_T.
- Particle flow mitigates this by subtracting pile-up track-by-track.
- Additional constituent based subtraction techniques are being investigated as well.

Christopher Young, CERN

Pile-Up Jets and Rejection JETM-2017-009, JETM-2017-006

- Pile-up creates additional reconstructed jets affects analyses and E^{miss}_T
- Jet Vertex Tagger is a likelihood based on the tracks pointing at the jet, designed to reject pile-up jets while keeping hard-scatter jets. ATLAS-CONF-2014-018
- It uses the fraction of track p_T from the HS as a fraction of the total, and the ratio of track p_T from the HS and the calorimeter p_T.
- Particle Flow also helps the rejection of pile-up jets (but maintains high efficiency).

Christopher Young, CERN

Forward Pile-Up Jets and Rejection arXiv:1705.02211

- Pile-up jets can either be from a combination of other vertices (stochastic) or a single vertex (QCD).
- For forward jets we try to identify central pile-up jets that balance forward jets as these are mainly QCD.
- Also looking at calo timing and jet shapes to reject stochastic pile-up.

Christopher Young, CERN

$E_{\rm T}^{\rm miss}$ - NEW CONF atlas-conf-2018-023

- ATLAS uses a object-based definition of the $E_{\mathrm{T}}^{\mathrm{miss}}$
- We take all the hard objects in the event; muons, electrons, photons, taus and jets, which are above threshold.
- We resolve the overlap between these at the cluster/track level this has been further optimized in this CONF.
- For soft energy flow we take tracks from the primary vertex (soft neutral particles are not included as pile-up contaminates that calorimeter).

Christopher Young, CERN

$E_{\rm T}^{\rm miss}$ Working Points atlas-conf-2018-023

- Several different working points are provided for analyses.
- In particular as pile-up increases the forward pile-up jets contribute to the $E_{\rm T}^{\rm miss}$ resolution a lot.
- Therefore better performance is achieved either using the forward pile-up rejection, or increasing the threshold for forward jets to be included in the E_T^{miss}.
- Using particle flow jets improves the resolution, particularly in events without forward jets.

Christopher Young, CERN

$E_{\rm T}^{\rm miss}$ Significance - NEW CONF atlas-conf-2018-038

- ► As the E^{miss}_T consists of a series of well defined hard objects and a soft term we can determine an object-based significance of the E^{miss}_T.
- The resolutions of all the hard objects are propagated as well as a gaussian to account for the missing neutral particles in the soft term.
- This exploits both the scale of the E^{miss}_T as well as its direction.
- Good data-to-MC agreement is seen both for the $E_{\rm T}^{\rm miss}$ significance.

Christopher Young, CERN

$E_{\rm T}^{\rm miss}$ Significance Performance Atlas-conf-2018-038

- ► To test the performance of this significance we create ROC curves for a signal of $ZZ \rightarrow II\nu\nu$ against a background of $Z \rightarrow II$.
- For an inclusive selection little gain is found but when combined with a soft E^{miss}_T cut or a more realistic analysis selection significant improvements in the performance are observed.
- Also see D. Portillo's poster at the conference on this topic!

Christopher Young, CERN

Conclusions

- Jet reconstruction is an important part of the ATLAS physics program.
- ▶ The Jet Energy Scale is derived from data and the uncertainty is < 1% for a 0.1 $< p_{\rm T} < 1$ TeV in the central region.
- Despite this the JES uncertainty remains one of the leading experimental uncertainties in many analyses.
- Therefore work continues to measure this more precisely using the larger full Run II dataset.
- $E_{\rm T}^{\rm miss}$ reconstruction also important for many searches and measurements.
- \blacktriangleright Careful reconstruction of this to avoid fake $E_{\rm T}^{\rm miss}$ tails continues.
- The newly developed E_T^{miss} significance shows promise for extracting signals more effectively from background.
- ▶ We still find that the E^{miss}_T is dependent on pile-up and work continues to reduce this dependence.

