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Jets and Boosted Particles

A jet is a collimated cluster of particles. It is often produced from a
colored parton.

q

jet

parton parton shower hadronized particles

As LHC stacking up multi TeV center-of-mass energy events, boosted
heavy particles can be produced and form a single collimated cluster of
particles similar to the QCD jet. (mEW /

√
ŝ = O(0.1))

h

jet

parton parton shower hadronized particles

We have to differentiate these non-QCD jets from QCD jets to maximize
sensitivity of channels involving boosted particles.
We use substructure observables on this purpose.
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Conventional observables of jet substructures

There are lots of observables of jet substructures, which are focussing on a
particular substructure. A few examples are:

mass of the mother particle: mjet, trimmed mjet, · · ·

h vs Z/W

n-prong jet: n-subjettiness ratio, D2, · · ·

j vs h/Z/W vs t · · ·

subjet pT asymmetry: mass drop tagger, · · ·

h vs j

color charge: jet girth (a kind of width), · · ·

q vs g

color substructures: jet pull between subjets, · · ·

h
vs g

Q: is there any generic framework that unifies these variables?

I want to introduce an analogy from Organic Chemistry.
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Organic Molecules

Organic molecules are complex molecules contains carbon, hydrogen, and
other atoms.
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Ethanol Benzene Acetic Acid

How chemists identified these complex substructures?

Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy
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Analogy of Jet Substructures and Organic Molecules

1H-NMR is a successful example of spectral analysis of molecular
substructures.

C
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HH
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OH

OH

CH2
CH3

01234

chemical shift
The perturbative description of jets is analogous to organic molecules.

Spectral analysis 1H-NMR spectroscopy → ??
Primary geometry Carbon skeleton → partons from the decay
Observables Hydrogen → hadronized particles

Can we build a similar analysis framework of jet substructures?

h

b

b̄

subjet pT asymmetry

self corr. Rbb̄

b b̄ large R FSR

empty region beyond Rbb̄
h: color singlet

2RjetRjet0

We will introduce a spectral analysis of jet substructure. 5 / 26
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A spectral function of jet substructure

We define a binned spectral function of transverse momenta of all particle

pairs i and j , pT ,i and pT ,j , and their angular distance Rij =
√
η2
ij + φ2

ij ,

S2(R; ∆R) =
1

∆R

∑
i,j∈jet

Rij∈[R,R+∆R)

pT ,ipT ,j , (1)

This spectral function observes two-point correlations in a jet.

h

b

b̄

S2(R)

R

0

Rbb̄

subjet autocorrelation

subjet cross-correlation

S2(R) =
(
p2
T ,b + p2

T ,b̄

)
· δ(R) + 2pT ,bpT ,b̄ · δ(R − Rbb̄).

Hence, this spectral function contains non-local correlation in jets. The
correlations can be used for detailed jet substructure studies. 6 / 26
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Physical Interpretation of S2(R)

∫ ∞
0

dR S2(R) =

(∑
i∈jet

pT ,i

)2

≈ p2
T ,jet, (2)

∫ ∞
0

dR R2S2(R) =
∑

i,j∈jet

pT ,ipT ,jR
2
ij ≈ 2m2

jet. (3)
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IRC safety of S2(R)

The S2(R) spectrum is better to be infrared and collinear (IRC) safe,
namely invariant under soft and collinear radiations.

Soft radiation: the parton radiates a pT = 0 parton.

pT
pT
pT = 0

Collinear radiation: the parton splits in same direction ~R.

pT
zpT
(1− z)pT

Otherwise, the virtual and real corrections in higher order perturbation
theory do not sum up, and such a IRC unsafe observables are hard to be
estimated from perturbative QCD calculations. (KNL theorem)

+ + = finite (4)

S2(R) is IRC safe because soft or collinear radiation does not introduce
any new angular scale R.

8 / 26



Introduction A spectral function of jet substructure Analysing the spectrum with neural network Conclusion

IRC safety of S2(R)

The S2(R) spectrum is IRC safe.

S2(R; ∆R) =
1

∆R

∑
i,j∈jet

Rij∈[R,R+∆R)

pT ,ipT ,j , (5)

Soft radiation is ignored safely because pT ,ipT ,j = 0 if i or j is a soft
radiation.

h

b

b̄

S2(R)

R

0

Rbb̄

Collinear radation is okay because ~R does not change and the radiation
products always sum up.

h

b

b̄

S2(R)

R

0

Rbb̄

Now, let’s check how S2(R) behaves with more realistic events at the
detector level.

9 / 26



Introduction A spectral function of jet substructure Analysing the spectrum with neural network Conclusion

A typical Higgs jet
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subjet pT : symmetric

Rbb̄

b b̄

empty region beyond Rbb̄
h: color singlet

2RjetRjet0
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S2(R) =
(
p2
T ,b + p2

T ,b̄

)
· δ(R) + 2pT ,bpT ,b̄ · δ(R − Rbb̄).
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A typical QCD jet and jet trimming
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Jet trimming removes soft subjets in the jet.

Jet trimming helps differentiating hard and soft jet substructures.
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Differntiating Higgs jets and QCD jets

h

b

b̄

subjet pT : symmetric

Rbb̄

b b̄

empty region beyond Rbb̄
h: color singlet

2RjetRjet0

q

q

g
soft

hard: mjet

hard soft

2RjetRjet0

S2(R) contains various information on jet substructures. But how can we
quantify it for classification?

Deep Learning
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Artificial Neural Network

Input Hidden1 Hidden2 · · · Hiddenn Output

Activation: ReLU ReLU ReLU softmax

pT ,jet

mjet

bias nodes

S2(R)

b b

· · ·

b

The artificial neural network is a mathematical model of functions
motivated from a biological neural network.
To make a long story short, the neural network is a function maps inputs
to outputs having lots of internal parameters needed to be optimized.

ANN({xi}) = f (n)(W (n) · · · f (2)(W
(2)
jk f (1)(W

(1)
ij xi + b

(1)
j ) + b

(2)
k ) · · ·+ b(n))

The network setup for jet substructure analysis depends on how you
interpret jets.
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Jet as an Image

We may interpret the calorimeter energy deposit as an image, and apply
image recongition techniques.
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Convolutional neural network

This ANN mimicks human eye and can be used for image recongnition.
It focuses on local spatial correlations

References: 1407.5675, 1511.05190
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Jet as a sequential data

The parton shower description of jets can be nterpreted as a sequential
data.

q

jet

parton parton shower

We may recluster the jet to get a parton shower history and feed this to
ANN.
Recurrent Nerual Network

The ANN understand data in sequence and find out correlations by reading
data sequentially.
Focussing on local temporal correlations

References: 1607.08633, 1702.00748
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Our ANN setup

Input Hidden1 Hidden2 · · · Hiddenn Output

Activation: ReLU ReLU ReLU softmax

pT ,jet

mjet

bias nodes

S2(R)

b b

· · ·

b

We used a simple shallow fully-connected neural network.

Inputs for S2(R) analysis
NS2

: {xi}S2
= {pT ,jet,mjet,S2(0; 0.1), · · · , S2(1.9; 0.1)}

NS2+tr : {xi}S2+tr

= {xi}S2
∪ {pT ,jet,tr ,mjet,tr ,S2,tr (0; 0.1), · · · ,S2,tr (1.9; 0.1)}
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Comparison to another variable

For comparison, we prepare an ANN anlysis with D2 variable (1409.6298)

eβ2 =
1

p2
T ,jet

∑
i,j∈jet
i<j

pT ,ipT ,jR
β
ij , (6)

eβ3 =
1

p3
T ,jet

∑
i,j,k∈jet
i<j<k

pT ,ipT ,jpT ,kR
β
ij R

β
jkR

β
ki , (7)

Dβ
2 =

eβ3
(eβ2 )3

∼ 4
(−)3

, (8)

For Higgs jets, D2 is small because three-point energy correlation have to
count soft or collinear radiation.

h

b

b̄

Dβ
2 ≈

(−)3

≈ � 1

Inputs for ANN with D2

ND2
: {xi}D2

= {pT ,jet,mjet,D
β=2
2 }

ND2+tr : {xi}D2+tr = {xi}D2
∪ {pT ,jet,tr ,mjet,tr ,D

β=2
2,tr }
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Performance check of ANN with D2

We first check that the performance of ND2+tr with The distributions of
Higgs jets and QCD jets in the Higgs-like probability ph(YD2+tr ) and inputs
in {xi}D2+tr .
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ND2+tr has a tendency to classify jets with small D2 and mjet ≈ 125 GeV
as a Higgs jet. This behavior is similar to the conventional cut-based
analysis.

Now it looks working well, so let us compare it with NS2+tr .
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ROC curve

Event preselection:
mjet ∈ [100, 150] GeV.
pT ,jet ∈ [300, 400] GeV.
Then Rbb̄ & 0.6 and anti-kT algorithm
with R = 1 finds the collimated
cluster well.
For Higgs jets, at least one b parton
should be found in the jet.

At the Higgs tagging efficiency 0.4
(0.2), QCD jet mistag rate of NS2+tr is
reduced by 21.6% (26.7%) compared to
that of ND2+tr .

Why S2(R) is doing better than D2?
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S2(R) and D2

S2(R) includes D2 partially. Let’s consider a three-prong jet.

S2(R)

R

R1 R2 R3

Two-point correlation function.∫ ∞
0

dR RβS2(R) = 2p2
T ,jete

β
2 (9)

Three-point correlation function.

eβ3 ≈ p−1
T ,jet ·

√
(∆R)3S2(R1; ∆R)S2(R2; ∆R)S2(R3; ∆R)Rβ1 Rβ2 Rβ3 (10)

Therefore, we may build D2 from S2(R) if it is required.

How the classifier NS2+tr is correlated to ND2+tr and why NS2+tr is doing
better job?
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Correlation between taggers
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For Higgs jets, the lower triangular region contains more events compared
with the upper triangular region, 51.3% of the total events.

For QCD jets, the lower triangular region contains less events, 43.1%.

Hence, NS2+tr improves signal and background ratio S/B from ND2+tr .

Let’s check what kinds of jets are located in the off-diagonal region.
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A jet tagged in S2 analysis only
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This jet looks like a Higgs jet but why ND2+tr classify it as a QCD jet?
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A jet tagged in S2 analysis only

0 1 2 3 4 5

2Dtrimmed 

0

1

2

3

4

52
D Higgs jets

0 1 2 3 4 5

2Dtrimmed 

0

1

2

3

4

5

fr
ac

tio
n 

of
 e

ve
nt

s 
[%

]

QCD jets

Event selection: ph(YD2,tr ) < 30% and ph(YS2,tr ) > 70%.

ANN tries to utilize every information in the inputs.

As a result, large D2 and small trimmed D2 are signs of large angle soft
activity which is a QCD jet’s feature compared to a Higgs jet. Hence
ND2+tr classifies these jets as a QCD jets.
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A jet tagged in D2 analysis only
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S2(R) =
(
p2
T ,b + p2

T ,b̄

)
· δ(R) + 2pT ,bpT ,b̄ · δ(R − Rbb̄).

pT asymmetric subjets are often occur in QCD jets.
Even though this jet is two-prong, it’s better to avoid this jet to enhance
S/B ratio as mass drop tagger does.
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A jet tagged in S2 analysis with trimming only
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This jet has two-prong substructure, but the subjets are wide and
contaminated by other QCD activities.

Jet trimming helps differentiating hard and soft substructure, and NS2+tr

classify this jet as a Higgs jet.
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Conclusion

NS2 and NS2+tr learned non-local correlations in jets from the spectrum.

NS2 discriminates between boosted Higgs jets and QCD jets with better
performance compared to ND2 .

Introducing trimming to S2(R) helps separating hard and soft
substructures, and the ANN with trimmed observable outperforms the
ANN without trimming.

The S2(R) has information on multi-point correlations and is easily
applicable to other jet substructures.
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