Long Lived Particles at the LHC

M.J. Ramsey-Musolf *U Mass Amherst*

http://www.physics.umass.edu/acfi/

Thanks: UMass Experimental HEP Group

LLP Workshop, ICTP Trieste October 2017

Goals For This Talk

- Energize: remind ourselves why searching for LLP's is exciting
- Evangelize: convince our colleagues that this scientific quest is important
- Engage: help set the foundation for the workshop and white paper completion

Outline

- I. BSM LLP Searches: Motivation
- II. LLP Scenarios: A Sampler
- III. Building a Roadmap

I. BSM LLP Searches: Motivation

LLP's For Newcomers

LLP's For Newcomers

LLP Dog Race

Experimental LLP Search: Motivation

Theorists think it's interesting

It's something we can do

It addresses fundamental Q's

LLP's @ LHC: Motivation

- Discovery of LLP's may provide clues to key open questions in fundamental physics
- Consideration of physical scales → LLP decay lengths ~
 ATLAS, CMS & LHCb detectors
- Energy frontier capabilities are unique and complementary to those at Intensity & Cosmic frontiers

LLP's @ LHC: Motivation

- Discovery of LLP's may provide clues to key open questions in fundamental physics
- Consideration of physical scales → LLP decay lengths ~
 ATLAS, CMS & LHCb detectors
- Energy frontier capabilities are unique and complementary to those at Intensity & Cosmic frontiers

Fundamental Questions

MUST answer

SHOULD answer

Fundamental Questions

MUST answer

SHOULD answer

$$H^0$$
 $M^2 \sim \lambda \Lambda^2$

 θ_{QCD} , parity, unification...

Fundamental Questions

MUST answer

Origin of m_{v} flavor...

SHOULD answer

$$H_{-}^{0}$$
 M^{0} M^{0} M^{0} M^{0} M^{0} M^{0}

 θ_{QCD} , parity, unification...

BSM Physics: Where Does it Live?

BSM Physics: Where Does it Live?

BSM Physics: Where Does it Live?

LLP's Exist in the SM

Thanks: B. Shuve, 2017 CERN LLP Workshop

Lessons from τ_u , τ_n and τ_Z :

Thanks: B. Shuve, 2017 CERN LLP Workshop

Lessons from
$$\tau_{\mu}$$
 τ_n and τ_Z : $Y \rightarrow X^* \rightarrow SM$

Phase space (192 π^{3} ~ *6000)*

$$c au pprox rac{1.2\,\mathrm{fm}}{g_X^4} \left(rac{M_X}{M_Y}
ight)^4 \left(rac{1\,\mathrm{TeV}}{M_Y}
ight)$$

Muon decay:

• $M_X \sim 80 \; \text{GeV}, \; M_Y \sim 0.1 \; \text{GeV} \; \& \; g_X^{\ 4} \sim 0.004 \; \rightarrow \; c\tau \; \sim 660 \; m \; *$

* Additional ½ for half-life

Lessons from
$$\tau_{\mu}$$
 τ_n and τ_Z : $Y \rightarrow X^* \rightarrow SM$

Phase space (192 π^{3} ~ *6000)*

$$c au pprox rac{1.2\,\mathrm{fm}}{g_X^4} \left(rac{M_X}{M_Y}
ight)^4 \left(rac{1\,\mathrm{TeV}}{M_Y}
ight)$$

BSM Examples:

- $M_X \sim 100$ GeV, $M_Y \sim 10$ GeV, $g_X^4 \sim 10^{-7} \rightarrow c\tau \sim 1$ cm N_R decay
- $M_X \sim 1 \text{ TeV}$, $M_Y \sim 10 \text{ GeV}$, $g_X^4 \sim 10^{-3} \rightarrow c\tau \sim 1 \text{ cm}$ Hidden Valley

Lessons from
$$\tau_{\mu}$$
 , (τ_{n}) and τ_{Z} :

$$Y \rightarrow X^* \rightarrow Z + SM$$

Phase space (192 π^{3} ~ *6000)*

$$\Delta M = M_Y - M_Z$$

$$c\tau \approx \frac{1.2 \,\mathrm{fm}}{g_X^4} \left(\frac{M_X}{\Delta M}\right)^4 \left(\frac{1 \,\mathrm{TeV}}{\Delta M}\right)$$

BSM Examples:

• $M_X \sim 100$ GeV, $\Delta M \sim 1$ GeV $g_X^4 \sim 10^{-2} \rightarrow c\tau \sim 1$ cm

SUSY

Lessons from
$$au_{\mu}$$
 , au_{n} and au_{Z} :

$$Y \rightarrow SM$$

Phase space (24 x $2^{1/2}$ x $\pi \sim 100$)

$$c au pprox rac{0.02 \, \mathrm{fm}}{g_Y^2} \; \left(rac{1 \, \mathrm{TeV}}{M_Y}
ight)$$

BSM Examples:

•
$$M_Y \sim 1 \text{ GeV \& } g_Y^2 \sim 10^{-12} \rightarrow c\tau \sim 1 \text{ cm}$$

$$Z_D$$

Large scale hierarchies & broken symmetries

$$\left(\frac{M_X}{M_Y}\right) >> 1$$

 Heavy (off shell) mediator: Hidden valley

$$\left(\frac{M_X}{\Delta M}\right) >> 1$$

• Compressed spectrum : Stealth SUSY

$$g_X << 1$$

- Broken symmetry:
 RPV SUSY
- Scale ratio: N_R, Z_D

Large scale hierarchies & broken symmetries

- Theories that address key open questions may involve scale hierarchies and/or symmetry breaking implying LLP's
- Are we looking in the right places in order to discovery the answers?
- What is the roadmap to potential discoveries?

II. LLP Scenarios: A Sampler

Apologies for omissions!

Solutions w/ LLP's: A Sampler

LLP Scenario	m _H	BAU	DM	$m_{_{\scriptscriptstyle V}}$
RH Neutrinos				
WIMPY baryogenesis				
Dark QCD				
Stealth SUSY				
Neutral Naturalness				
Dark U(1)				

Solutions w/ LLP's: A Sampler

LLP Scenario	m _H	BAU	DM	$m_{_{\scriptscriptstyle V}}$
RH Neutrinos	*	V	/	~
WIMPY baryogenesis	*	V	?	*
Dark QCD	*	~	~	*
Stealth SUSY	~	~	V	*
Neutral Naturalness	~	*	*	*
Dark U(1)	×	×	~	×

Solutions w/ LLP's: A Sampler

LLP Scenario	m_H	BAU	DM	$m_{_{\scriptscriptstyle V}}$
RH Neutrinos	×	V	~	V
WIMPY baryogenesis	*	/	?	*
Dark QCD	×	~	~	*
Stealth SUSY	V	V	~	*
Neutral Naturalness	~	*	*	*
Dark U(1)	*	*	~	*

Hidden Valleys

Strassler, Zurek '06...

Solutions w/ LLP's: RH Neutrinos

Solutions w/ LLP's: RH Neutrinos

Type I see-saw: vSM

$$U_{\alpha N} \sim \frac{m_D}{M_N}$$

Type I & II see-saw: LRSM

$$U_{\alpha N} \sim \sqrt{\frac{v_L}{v_R} - \frac{m_\nu}{M_N}}$$

Solutions w/ LLP's: RH Neutrinos

BAU from Leptogenesis

- Drewes et al '16
- Lower bound < 10⁻¹⁰

Solutions w/ LLP's: Wimpy Baryogenesis

Baryon number violating:

$$\chi \to u_i d_j d_k$$

Lepton number violating:

$$\chi \to L_i Q_j \bar{d}_k$$

 $\chi \to L_i L_j \bar{E}_k$

Like leptogenesis

Solutions w/ LLP's: Hidden Valleys

Solutions w/ LLP's: Dark QCD

Asymmetric DM: $m_{DM} n_{DM} \sim 5 m_N n_B \rightarrow$

- For $n_{DM} \sim n_B \rightarrow m_{DM} \sim \text{few } x m_B$
- $\Lambda_{dark\ QCD} \sim few\ x\ \Lambda_{QCD}$

Solutions w/ LLP's: Stealth SUSY

Solutions w/ LLP's: Neutral Naturalness

D. Curtin, C. Verhaaren

Top partners

Solutions w/ LLP's: Neutral Naturalness

Solutions w/ LLP's: Neutral Naturalness

Solutions w/ LLP's: Dark U(1)

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_D$$

$$\mathcal{L} \subset -\frac{1}{4} \, \hat{B}_{\mu\nu} \, \hat{B}^{\mu\nu} - \frac{1}{4} \, \hat{Z}_{D\mu\nu} \, \hat{Z}_D^{\mu\nu} + \frac{1}{2} \, \frac{\epsilon}{\cos \theta} \, \hat{Z}_{D\mu\nu} \, \hat{B}^{\mu\nu} + \frac{1}{2} \, m_{D,0}^2 \, \hat{Z}_D^{\mu} \, \hat{Z}_{D\mu}$$

$$V_0(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$$

$$\mathcal{L} \subset -rac{1}{4}\,\hat{B}_{\mu
u}\,\hat{B}^{\mu
u} - rac{1}{4}\,\hat{Z}_{D\mu
u}\,\hat{Z}_D^{\mu
u} + rac{1}{2}\,rac{\epsilon}{\cos heta}\,\hat{Z}_{D\mu
u}\,\hat{B}^{\mu
u} + rac{1}{2}\,m_{D,0}^2\,\hat{Z}_D^\mu\,\hat{Z}_{D\mu}$$

Abelian Kinetic Mixing Mass Mixing

$$V_0(H,S) = -\mu^2 |H|^2 + \lambda |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$$
 Higgs Mixing

$$\mathcal{L} \subset -\frac{1}{4}\,\hat{B}_{\mu\nu}\,\hat{B}^{\mu\nu} - \frac{1}{4}\,\hat{Z}_{D\mu\nu}\,\hat{Z}_D^{\mu\nu} + \underbrace{\frac{1}{2}\,\frac{\epsilon}{\cos\theta}\,\hat{Z}_{D\mu\nu}\,\hat{B}^{\mu\nu}}_{Abelian\;\textit{Kinetic Mixing}} + \underbrace{\frac{1}{2}\,m_{D,0}^2\,\hat{Z}_D^\mu\,\hat{Z}_{D\mu}}_{Mass\;\textit{Mixing}}$$

Dark Z: Scale Hierarchy

Non-Abelian Kinetic Mixing

$$\mathcal{O}_{WX}^{(5)} = -\frac{\beta}{\Lambda} \operatorname{Tr} (W_{\mu\nu} \Sigma) X^{\mu\nu}$$

 $SU(2)_L \times U(1)_D$ mediators

$$\epsilon = \beta \sin \theta_W \left(\frac{v_{\Sigma}}{\Lambda}\right)$$

Small ε from scale ratio; $\beta \sim O(1)$

LLP's @ LHC: Motivation

- Discovery of LLP's may provide clues to key open questions in fundamental physics
- Consideration of physical scales → LLP decay lengths ~
 ATLAS, CMS & LHCb detectors
- Energy frontier capabilities are unique and complementary to those at Intensity & Cosmic frontiers

Solutions w/ LLP's: RH Neutrinos

$$\Gamma(N \to \ell_\alpha^- \ell_\beta^+ \nu_\beta) = \frac{G_{\rm F}^2 M_N^5 |V_{\alpha N}|^2}{192\pi^3}$$

Solutions w/ LLP's: Wimpy Baryogenesis

Baryon number violating:

$$\chi \to u_i d_j d_k$$

Lepton number violating:

$$\chi \to L_i Q_j \bar{d}_k$$
$$\chi \to L_i L_j \bar{E}_k$$

3-body phase space

Sakharov: out-of-eq condition

$$\Gamma_{\chi} < H(T = M_{\chi})$$
 $c\tau_{\chi} \gtrsim \text{mm}$

Solutions w/ LLP's: Dark QCD

Asymmetric DM: $m_{DM} n_{DM} \sim 5 m_N n_B \rightarrow$

- For $n_{DM} \sim n_B \rightarrow m_{DM} \sim \text{few } x m_B$
- $\Lambda_{dark\ QCD} \sim few\ x\ \Lambda_{QCD}$

$$c\tau(\pi_D \to {
m SM}) \sim \frac{M_X^4}{m_{\pi_D}^5} \sim {
m cm} \times \left(\frac{{
m M}_{
m X}}{{
m TeV}}\right)^4 \left(\frac{{
m GeV}}{{
m m}_{\pi_{
m D}}}\right)^5$$

Solutions w/ LLP's: Stealth SUSY

$$\Gamma_{\tilde{X}} = \frac{m_{\tilde{X}}^5}{16\pi F^2} \left(1 - \frac{m_{X}^2}{m_{\tilde{X}}^2}\right)^4 \approx \frac{m_{\tilde{X}} \; (\delta m)^4}{\pi F^2}$$

$$m_{\chi}$$
 = 100 GeV
 $\delta m \sim 10$ GeV
 $\sigma = 10$ C $\sigma = 10$ Cm
 $\sigma = 100$ TeV)²

Solutions w/ LLP's: Neutral Naturalness

LLP's @ LHC: Motivation

- Discovery of LLP's may provide clues to key open questions in fundamental physics
- Consideration of physical scales → LLP decay lengths ~
 ATLAS, CMS & LHCb detectors
- Energy frontier capabilities are unique and complementary to those at Intensity & Cosmic frontiers

Solutions w/ LLP's: RH Neutrinos

$$\Gamma(N \to \ell_\alpha^- \ell_\beta^+ \nu_\beta) = \frac{G_{\rm F}^2 M_N^5 |V_{\alpha N}|^2}{192\pi^3}$$

- Displaced LJ + μ
- 3 resolved prompt leptons

Solutions w/ LLP's: Wimpy Baryogenesis

Baryon number violating:

$$\chi \to u_i d_j d_k$$

Lepton number violating:

$$\chi \to L_i Q_j \bar{d}_k$$
$$\chi \to L_i L_j \bar{E}_k$$

3-body phase space

• BNV: displaced jets

• LNV: displaced μ + tracks

Sakharov: out-of-eq condition

$$\Gamma_{\chi} < H(T = M_{\chi})$$
 $c\tau_{\chi} \gtrsim \text{mm}$

Solutions w/ LLP's: Dark QCD

Asymmetric DM: $m_{DM} n_{DM} \sim 5 m_N n_B \rightarrow$

- For $n_{DM} \sim n_B \rightarrow m_{DM} \sim \text{few } x m_B$
- $\Lambda_{dark\ QCD} \sim few\ x\ \Lambda_{QCD}$

$$c\tau(\pi_D \to {
m SM}) \sim \frac{M_X^4}{m_{\pi_D}^5} \sim {
m cm} \times \left(\frac{{
m M}_{
m X}}{{
m TeV}}\right)^4 \left(\frac{{
m GeV}}{{
m m}_{\pi_{
m D}}}\right)^5$$

Emerging Jets

Solutions w/ LLP's: Stealth SUSY

$$\Gamma_{\tilde{X}} = \frac{m_{\tilde{X}}^5}{16\pi F^2} \left(1 - \frac{m_X^2}{m_{\tilde{X}}^2}\right)^4 \approx \frac{m_{\tilde{X}} \left(\delta m\right)^4}{\pi F^2}$$

- Prompt V + displaced jj ("false resonances")
- DV's + high multiplicity b-jets
- ...

Solutions w/ LLP's: Neutral Naturalness

wisible Higgs SM top partners

Exotic Higgs decays: $h \rightarrow 0^{++} 0^{++}$ w/ 2 DV's or 1 DV +...

D. Curtin, C. Verhaaren

55

Non-Abelian Kinetic Mixing

$$\mathcal{O}_{WX}^{(5)} = -rac{eta}{\Lambda} \operatorname{Tr} \left(W_{\mu
u} \Sigma \right) X^{\mu
u}$$

Prompt V + 2 displaced LJ's

Recast ATLAS '14 (no prompt V)

III. Building a Roadmap

Time to extend the coverage & reach!

- 1 or 2 displaced LJ's + prompt L or $V(N_R, non-Abelian Z_D)$
- Displaced jets (WIMPY baryogenesis, neutral naturalness)
- Displaced V + jets (Stealth SUSY)
- Displaced μ + tracks (WIMPY baryogenesis)
- Emerging jets (Dark QCD)
- High multiplicity b-jets + displaced jets (Stealth SUSY, hidden valleys...)
- Disappearing or kinked charged tracks (SUSY, quirks, EW multiplet DM...)

• ...

April CERN WS & Progress

LLP's: Challenges (April)

WG 1

Simp models & recast

WG 2

Backgrounds

Triggering

WG3

Dark Shower

WG 4

LLP's: Challenges (Now)

WG 1 & 4

Simp models & recast

WG 2

Expt Coverage

Triggering

WG3

Dark Shower

WG 5

WG 1 & 4 Simp models & recast Common production) x (Variety of decay objects) L1 in good shape, but exploit associated objects **Triggering WG** 3

WG 2

Expt Coverage

Dark Shower

WG 5

Push the Reach w/ Prompt Objects

 $RH\nu^*$

 $RH\nu$

 $RH\nu^*$

 $RH\nu^*$

CC: $W(W') \rightarrow \ell X$

LLP's: A Rich Menu of Opportunities

