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Goals For This Talk 

•  Energize: remind ourselves why 
searching for LLP’s is exciting 

•  Evangelize: convince our colleagues 
that this scientific quest is important 

•  Engage: help set the foundation for the 
workshop and white paper completion 
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Outline 

I.  BSM LLP Searches: Motivation 

II.  LLP Scenarios: A Sampler 

III.  Building a Roadmap 
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I. BSM LLP Searches: Motivation 



LLP’s For Newcomers 
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LLP’s For Newcomers 

6 LLP Dog Race 

MRM 



Experimental LLP Search: Motivation 
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•  Theorists think it’s interesting 
 

•  It’s something we can do 
 

•  It addresses fundamental Q’s 



LLP’s @ LHC: Motivation  

•  Discovery of LLP’s may provide clues to key open 
 questions in fundamental physics 

•  Consideration of physical scales ! LLP decay lengths ~ 
 ATLAS, CMS & LHCb detectors 

•  Energy frontier capabilities are unique and complementary 
 to those at Intensity & Cosmic frontiers 
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 θQCD  , parity, unification...  
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LLP’s Exist in the SM 

Thanks: B. Shuve, 2017 CERN LLP Workshop 



Why Should BSM LLP’s Exist ? 

17 
Thanks: B. Shuve, 2017 CERN LLP Workshop 

Lessons from τµ , τ n  and  τZ :  
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Lessons from τµ , τ n  and  τZ :  Y ! X * ! SM  

 Phase space (192 π3 ~ 6000)  

 Muon decay:  

•  MX ~ 80 GeV, MY ~ 0.1 GeV & gX
4 ~ 0.004 !  cτ  ~ 660 m  *	

* Additional ½ for half-life 

uI
Li = (Su)ij umass

Lj (49)

uI
Ri = (Tu)ij umass

Rj (50)

dI
Li = (Sd)ij dmass

Lj (51)

dI
Ri = (Td)ij dmass

Rj (52)

V
CKM

= S†
uSd (53)

V L
CKM

= S†
uSd (54)

(55)

V R
CKM

= T †
uTd (56)

V R
CKM

= T †
uTd (57)

Ĥ
1�body

=
GFp

2

⌘

2mN

~� · ~r ⇢(~r) (58)

⌘ / GF sin � sin ✓
1

sin ✓
2

sin ✓
3

(59)

dA(199Hg) = S S

(60)

 = 2.8⇥ 10�4 fm�2

(61)

S = �1.4⇥ 10�8 e� fm3

YB =
nB

s
= (8.59 ± 0.11)⇥ 10�11

c⌧ ⇡ 1.2 fm

g4

X

✓
MX

MY

◆
4

✓
1 TeV

MY

◆
(62)
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Lessons from τµ , τ n  and  τZ :  Y ! X * ! SM  
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Lessons from τµ , τ n  and  τZ :  Y ! X * ! Z + SM  

 Phase space (192 π3 ~ 6000)  

 BSM Examples:  

•  MX ~ 100 GeV, ΔM ~ 1 GeV  gX
4 ~ 10-2 !  cτ  ~ 1 cm  	 SUSY 

 ΔM = MY - MZ 
c⌧ ⇡ 0.02 fm

g2

Y

✓
1 TeV

MY

◆
(63)

c⌧ ⇡ 1.2 fm

g4

X

✓
MX

�M

◆
4

✓
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�M

◆
(64)

✓
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�M

◆
>> 1 (65)

gX << 1 (66)

U↵N ⇠ mD

MN

(67)

U↵N ⇠
r

vL

vR

� m⌫

MN

(68)
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Lessons from τµ , τ n  and  τZ :  Y ! SM  

 Phase space (24 x 21/2 x  π ~ 100)  

 BSM Examples:  

•  MY ~ 1 GeV & gY
2 ~ 10-12 !  cτ  ~ 1 cm  	

	

c⌧ ⇡ 0.02 fm

g2

Y

✓
1 TeV

MY

◆
(63)
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Large scale hierarchies & broken symmetries  

c⌧ ⇡ 0.02 fm

g2
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(63)
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•  Heavy (off shell) mediator:     
Hidden valley 

•  Compressed spectrum : 
Stealth SUSY 

•  Broken symmetry:     
RPV SUSY 

•  Scale ratio: NR , ZD  
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Large scale hierarchies & broken symmetries  

•  Theories that address key open questions 
may involve scale hierarchies and/or 
symmetry breaking implying LLP’s 

•  Are we looking in the right places in order 
to discovery the answers ? 

•  What is the roadmap to potential 
discoveries ? 
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II. LLP Scenarios: A Sampler 

Apologies for omissions ! 



Solutions w/ LLP’s: A Sampler 

LLP Scenario  DM mν BAU 

 RH Neutrinos 

 WIMPY baryogenesis 

 Dark QCD 

 Stealth SUSY 

 Neutral Naturalness 

 Dark U(1) 

mH 
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Hidden Valleys 
Strassler, Zurek ’06… 
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P. Mermod 

Mixing UαN 

E. Izzaguire & B. Shuve 
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P. Mermod 

Mixing UαN 

E. Izzaguire & B. Shuve 
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Type I see-saw: νSM 

Type I & II see-saw: LRSM  
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P. Mermod 

Mixing UαN 

E. Izzaguire & B. Shuve 

BAU from Leptogenesis 
 
•  Drewes et al ‘16 

•  Lower bound < 10-10 



Solutions w/ LLP’s: Wimpy Baryogenesis 
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Y. Cui et al. 

Like leptogenesis 



Solutions w/ LLP’s: Hidden Valleys 
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Hidden SM 

Mediator 



Solutions w/ LLP’s: Dark QCD 
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P. Schwaller 
Asymmetric DM:  mDM nDM ~ 5 mN nB   ! 
 
•  For nDM ~ nB ! mDM ~ few x mB 

•  Λdark QCD ~ few x ΛQCD	

Dark 
QCD 

SM 
QCD 

X 

DM 



Solutions w/ LLP’s: Stealth SUSY 
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Fan, Reece, Ruderman 

Gravitino SM 

Singlets 



Solutions w/ LLP’s: Neutral Naturalness 
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D. Curtin, C. Verhaaren 

Top partners 
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Mirror 
Glueballs 

SM 

OEFF 

Juknevich 

D. Curtin, C. Verhaaren 
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Glueballs 

SM 
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Juknevich 

D. Curtin, C. Verhaaren 



Solutions w/ LLP’s: Dark U(1) 
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SU(3)C x SU(2)L x U(1)Y  x U(1)D 



Dark Z: Mechanism 

39 

J
H
E
P
0
2
(
2
0
1
5
)
1
5
7

2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1

4
ẐDµν Ẑ

µν
D +

1

2

ϵ

cos θ
ẐDµν B̂

µν +
1

2
m2

D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.

– 4 –

J
H
E
P
0
2
(
2
0
1
5
)
1
5
7

2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1

4
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and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1

4
ẐDµν Ẑ

µν
D +

1

2

ϵ

cos θ
ẐDµν B̂

µν +
1

2
m2

D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are
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D +
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D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1

4
ẐDµν Ẑ

µν
D +

1

2

ϵ

cos θ
ẐDµν B̂

µν +
1

2
m2

D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1
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ẐDµν Ẑ
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D +
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ϵ

cos θ
ẐDµν B̂

µν +
1

2
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D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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Non-Abelian Kinetic Mixing 

SU(2)L x U(1)D mediators Small ε from scale ratio; 

 β ~ O(1) 

Arguelles, He, Ovaneysan, Peng, MRM ’16 
See also Barello, Chang, Newby ‘15  
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•  Consideration of physical scales ! LLP decay lengths ~ 
 ATLAS, CMS & LHCb detectors 

•  Energy frontier capabilities are unique and complementary 
 to those at Intensity & Cosmic frontiers 
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P. Mermod 

E. Izzaguire & B. Shuve 

Mixing UαN 

Excluded 

See also: Helo, Kovalenko & Hirsch 
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3-body phase space 

Sakharov: out-of-eq condition 
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P. Schwaller 
Asymmetric DM:  mDM nDM ~ 5 mN nB   ! 
 
•  For nDM ~ nB ! mDM ~ few x mB 

•  Λdark QCD ~ few x ΛQCD	
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X 
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Fan, Reece, Ruderman 

Gravitino SM 
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 mX = 100 GeV 
 δm ~ 10 GeV 
 F    ~ (100 TeV)2 

 c τ  ~ 10 cm 
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D. Curtin, C. Verhaaren 
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•  Discovery of LLP’s may provide clues to key open 
questions in fundamental physics 

•  Consideration of physical scales ! LLP decay lengths ~ 
 ATLAS, CMS & LHCb detectors 

•  Energy frontier capabilities are unique and complementary 
 to those at Intensity & Cosmic frontiers 
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P. Mermod 

Mixing UαN 

•  Displaced LJ + µ	
•  3 resolved prompt leptons 

E. Izzaguire & B. Shuve 

Excluded 
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3-body phase space 

Sakharov: out-of-eq condition 

•  BNV: displaced jets 
•  LNV: displaced µ + tracks 
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P. Schwaller 
Asymmetric DM:  mDM nDM ~ 5 mN nB   ! 
 
•  For nDM ~ nB ! mDM ~ few x mB 

•  Λdark QCD ~ few x ΛQCD	

Dark 
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SM 
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X 

DM 

Emerging Jets 
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Fan, Reece, Ruderman 

Gravitino SM 

S 

 mX = 100 GeV 
 δm ~ 10 GeV 
 F    ~ (100 TeV)2 

 c τ  ~ 10 cm 

•  Prompt V + displaced jj 
 (“false resonances”) 

•  DV’s + high multiplicity b-jets 
•  … 

CMS-SUS-14-000 
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SM 

OEFF 

Juknevich 

Exotic Higgs decays: h ! 0++ 0++  
w/ 2 DV’s or 1 DV +… 

D. Curtin,     
C. Verhaaren 
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2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1

4
ẐDµν Ẑ

µν
D +

1

2

ϵ

cos θ
ẐDµν B̂

µν +
1

2
m2

D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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2 A kinetically mixed dark U(1)

In this section, we review the theory of kinetic mixing between a broken dark Abelian

gauge symmetry, U(1)D, and the SM hypercharge, U(1)Y . The relevant gauge terms in the

Lagrangian are

L ⊂ −1

4
B̂µν B̂

µν − 1

4
ẐDµν Ẑ

µν
D +

1

2

ϵ

cos θ
ẐDµν B̂

µν +
1

2
m2

D,0 Ẑ
µ
D ẐDµ . (2.1)

Here the hatted fields indicate the original fields with non-canonical kinetic terms, before

any field redefinitions. The U(1)Y and U(1)D field strengths are respectively B̂µν = ∂µB̂ν−
∂νB̂µ and ẐDµν = ∂µẐDν − ∂νẐDµ, θ is the Weinberg mixing angle, and ϵ is the kinetic

mixing parameter.

Since the interaction in eq. (2.1) is renormalizable, the parameter ϵ can take on any

value. In particular, ϵ is not required to be small, which is one reason why the hyper-

charge portal may provide the dominant interaction between the SM and a hidden sector.

Calculable values of ϵ are obtained in various scenarios. For example, if the U(1)D is em-

bedded in a Grand Unified Theory (GUT), the mixing is absent above the GUT scale,

but can be generated below it by particles charged under both U(1)Y and U(1)D. If it

is generated through a one-(two-)loop interaction, one naturally obtains ϵ ∼ 10−3 − 10−1

(∼ 10−5 − 10−3) [25, 79, 81, 87]. A much larger range of ϵ has been suggested in certain

string theory scenarios [28, 88–90]; see [28–30] for recent reviews.

Meanwhile, the general renormalizable potential for the SM and dark Higgs fields is

V0(H,S) = −µ2|H|2 + λ|H|4 − µ2
S |S|2 + λS |S|4 + κ|S|2|H|2 . (2.2)

Here H is the SM Higgs doublet, while S is the SM-singlet ‘dark Higgs’ with U(1)D charge

qS . The Higgs portal coupling, κ, which links the dark and SM Higgs fields is again

a renormalizable parameter, and may again be sizeable. After spontaneous symmetry

breaking in the dark and visible sectors, κ controls the mixing between the SM Higgs boson

h0 and the uneaten component of the dark Higgs, s0. The importance of an additional Higgs

portal coupling to sectors containing a dark vector boson has been realized before [68, 91],

particularly in the context of hidden valley models [92]. While some collider studies have

been performed [50, 67, 69, 93], its consequences have not been as widely explored as those

of the hypercharge portal. The physical dark Higgs boson could in principle be produced at

colliders and give an additional experimental handle on the model. However, in this paper

we focus on the additional SM Higgs decays to dark photons generated by this interaction,

and assume the Higgs decay to dark scalars is kinematically forbidden.

We have also constructed a fully consistent MadGraph 5 [94] implementation of this

model using FeynRules 2.0 [95]. This MadGraph model consistently implements all field

redefinitions, thereby accurately modeling interference effects, and has been extensively

validated by comparing its output to various analytical predictions. We utilize this model

in the collider studies of sections 4 and 6, as well as for the calculation of the three-body

decay width h → ZDℓℓ below, and make it publicly available for follow-up investigations.

See appendix C for more information.
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Arguelles, He, Ovaneysan, Peng, MRM ’16 

Prompt V + 2 displaced LJ’s 

Recast ATLAS ’14 
(no prompt V)  
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III. Building a Roadmap 

Signatures 

Discovery 

Time to extend the coverage & reach ! 
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•  1 or 2 displaced LJ’s + prompt L or V ( NR , non-Abelian ZD ) 

•  Displaced jets (WIMPY baryogenesis, neutral naturalness) 

•  Displaced V + jets (Stealth SUSY) 

•  Displaced µ + tracks (WIMPY baryogenesis) 

•  Emerging jets (Dark QCD) 

•  High multiplicity b-jets + displaced jets (Stealth SUSY, hidden 
valleys…) 

•  Disappearing or kinked charged tracks (SUSY, quirks, EW multiplet 
DM…) 

•  … 
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H. Russell 
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April CERN WS & Progress 
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WG 1 WG 2 

WG 4 

Simp models & recast Backgrounds 

WG 3 
Triggering Dark Shower 
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WG 1 & 4 WG 2 

WG 5 

Simp models & recast Expt Coverage 

WG 3 
Triggering Dark Shower 
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WG 2 

WG 5 

Simp models & recast Expt Coverage 

WG 3 
Triggering Dark Shower 

( Common production ) x 
( Variety of decay objects) 

L1 in good shape, but 
exploit associated objects 

WG 1 & 4 
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E. Izzaguire & B. Shuve 

Excluded 
Prompt µ + semilept 
NR  decay 

Prompt W + 2 DV 
lepton jets 

VBF jets or prompt V 

Associated prompt 
objects ! 
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WG 2 

WG 5 

Simp models & recast Expt Coverage 

WG 3 
Triggering Dark Shower 

( Common production ) x 
( Variety of decay objects) 

L1 in good shape, but 
exploit associated objects 

Model library 

New paths ? 
Displaced tau’s 
Mono-X 

Initial set  

Vetoing map 

Upgrade: new 
layer ? 

Many open Q’s 

WG 1 & 4 
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WG 2 

WG 5 

Simp models & recast Expt Coverage 

WG 3 
Triggering Dark Shower 

( Common production ) x 
( Variety of decay objects) 

L1 in good shape, but 
exploit associated objects 

Model library 

New paths ? 
Displaced tau’s 
Mono-X 

Initial set  

Vetoing map 

Upgrade: new 
layer ? 

Many open Q’s 

WG 1 & 4 
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WG 2 

WG 5 

Simp models & recast Backgrounds 

WG 3 
Triggering Dark Shower 

( Common production ) x 
( Variety of decay objects) 

L1 in good shape, but 
exploit associated objects 

Model library 

New paths ? 
Displaced tau’s 
Mono-X 

Initial set  

Vetoing map 

Upgrade: new 
layer ? 

Many open Q’s 

WG 1 & 4 
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WG 2 

WG 5 

Simp models & recast Expt Coverage 

WG 3 
Triggering Dark Shower 

( Common production ) x 
( Variety of decay objects) 

L1 in good shape, but 
exploit associated objects 

Model library 

New paths ? 
Displaced tau’s 
Mono-X 

Initial set  

Vetoing map 

Upgrade: new 
layer ? 

Many open Q’s 

WG 1 & 4 
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