Experimental Coverage WG: Report ### José Francisco Zurita Institut für Kernphysik (IKP) and Institute für Theoretische Teilchen Physik (TTP), Karlsruher Institut für Technologie (KIT). WG: Xabier Cid Vidal, Heather Russell, Albert de Roeck, Jared Evans, David Curtin, JZ # WGgoals - * This working group originally aims at identifying the most obvious gaps in coverage of the current studies. - * Byproduct: provide a concise summary of searches, inviting to challenge the shortcomings and caveats (some already in the lightning round!). - * By definition: we exclude Hidden Valley signatures and dedicated experiments such as MoEDAL, MilliQan (they get their own section!). - * Status: Internal note (almost) finished, a 1st "public" draft is expected after the workshop (so we can add <u>your</u> feedback). - * Should we transform the summary above in a library / webpage / catalog with all LLP studies linked? (à la HXSWG) ### Classification - * Any classification attempt is arbitrary, but within the options we concentrate in the final state products: hadronic, leptonic, semi-leptonic, photonic. - * Whatever does not fall in the categories above goes into the "non-standard"* track section (/dev/null). - * Backgrounds are (fairly well) understood, I won't cover them. The <u>main</u> <u>limitations</u> in coverage arise from: - triggers (recycling prompt ones vs dedicated strategies). - object properties (pT thresholds, location in the detector, etc). - * targeted topology (e.g: 1 vs 2 LLPs). ^{*} Includes all sorts of unconventional signatures: quirks, monopoles, disappearing tracks, etc... # Fully hadronic decays: landscape #### * ATLAS: - * two DVs decaying in: - * HCAL: ATLAS-CONF-2016-103 - * MS and ID: CERN-PH-EP-2015-071 - * ID (+ MET): ATLAS-CONF-2017-026 - * DV + X (X=muon, electron, jet, MET): CERN-PH-2015-065 - * CMS: - inclusive displaced jets and leptons: CMS PAS-EXO-16-003 - * displaced jets: CMS PAS-EXO 2013-037 - LHCb: looks for SM Higgs / scalar decaying into LLPs: - * 1 LLP: LHCb-PAPER-2016-065 (the other LLP lost in acceptance). - * 2 LLP: LHCb-PAPER-2016-014 ## Fully hadronic decays@ATLAS+CMS #### * ATLAS: - Large radius tracking (LRT): Left-overs hits from normal tracks give displaced tracks. (see M.Lutz's talk) - * Dedicated triggers in HCAL (CalRatio)/MS (MuonRoI). FTK can improve these! (see T. Holmes and L. Horyn talks) - * DV+X: use standard "X" triggers. - * $c\tau \sim [0.1-10]$ m constrained for rates of $\sim 50 \text{fb}^{-1}$. #### * CMS: - * Dedicated off-line *displaced jet (DJ)* tagger triggering on large $H_T > 350-500$ GeV. - * Fails for $c\tau < 3$ mm (> 1m) due to SM B-physics backgrounds (no decays on tracker). - * 2 DJs are kept (1 DJ used as control sample, no coverage for single LLP.) - * Theory recast of this search for SM Higgs [arXiv:1508.01522] - Most searches require pairs of DVs. - * Sensitivity degrades for low masses: CMS, $c\tau$ =30 mm, efficiency of 2 (41)% for 50 (100) GeV. # Fully hadronic decays@LHCb - * Focuses on scalars decaying into pairs of dark pions (π_V) - * Trigger on DVs ($d_T > 4$ mm) with 4+ tracks. - * Improvements: shorter cτ (understanding detector) and lower masses (higher boosts using jet-substructure). See C.Vasquez Sierras's talk yesterday CMS-EXO-12-038 LHCB-PAPER-2016-065 CERN-PH-2015-065 Borrowed/stolen from M. Borsato ## Leptonic decays #### * ATLAS: - * 2 displaced OS lepton pairs: CERN-PH-2015-065 - * displaced lepton-jets: ATLAS-CONF-2016-042 (also prompt in CERN-PH-2015-242) #### * CMS: - * 2 displaced OS lepton pairs: CMS PAS EXO 12-037, only MS: CMS PAS EXO 14-012. - * displaced lepton jets: CMS-HIG-13-010 - * $1 \text{ e} + 1 \mu$ with large impact parameter (0.2-20 mm) CMS-EXO-16-022 Nothing else is required (the tracks do not even point to a common vertex!) - * LHCb: light neutral LLPs going into $\mu^{\dagger}\mu^{\bar{}}$ from B->K decays. - * neutral B: LHCb-PAPER-2015-036. - * charged B: LHCb-PAPER-2016-052. ^{*} Lepton-jet is a highly collimated lepton, decaying from O(GeV) parent particles. ## Leptonic decays@ATLAS+CMS #### * ATLAS: - * Trigger on μ,γ (large impact e more difficult to reconstruct) - * Form DV (> 4 mm from PIP) with OS leptons (no flavor bias) and outside of dense material regions (to avoid photon conversion). #### * CMS: - Standard lepton triggers. - * PIP with 4+ tracks and μ displaced < 24 (2) cm along (transverse) to the beam. - * DV with two OS leptons and pT cut (26,36,21) for (μ , e_1 , e_2). - CMS high impact electron+muon: - Dedicated trigger for displaced e-μ pairs, using only pT information (no tracking!) (see Keller's talk) - * $|d_0|/\mu m$ defines "prompt" (<100), "control" (100-200) and "signal" (> 200) region (*SM lepton-free*). - * These searches do not include: e⁺ e⁻, μ⁺ μ⁻ not from same vertex, SS leptons, prompt 3rd lepton, hadronic τs. ## Displaced lepton-jets@ATLAS+CMS - * CMS: Trigger on μ 's with standard isolation requirements. Request 4μ only, using 2 pairs of 2 OS (electrons, taus are lacking!) - ATLAS: Dedicated triggers CalRatio, MuonRol. Cluster lepton-jets (fixed-cone size) and tag them by (μ,jet) content. - * Interpretation done in terms of light scalars going to μ , dark photons (γ_D). - How smooth is the transition from displaced leptons-jets to 'standard displaced" leptons? Are we covering intermediate masses? # Leptonic decays@LHCb - Uses LHCb capabilities to identify the B-mesons, Kaons. - * Scan on $m(\mu^+\mu^-)$. $X -> \mu^+\mu^-$ is not necessarily displaced (prompt X. - * Reach limited due to the kinematics of the event (What if $m_X > 5$ GeV?) # Semi-Leptonic decays - * Many leptonic and hadronic searches partially cover this case: ATLAS e,μ + tracks (CERN-PH-2015-065), CMS inclusive DV search (CMS PAS-EXO-16-003), CMS large impact e,μ (CMS-EXO-16-022) - * LHCb-PAPER-2016-047: dedicated search for semi-lep decaying LLPs. Triggers on μ , selects offline a DV and does MVA on pT(μ) and d₀(μ). Optimisation on LLP mass and muon isolation. Covers c τ between 1.5 and 30 mm. - How does the simultaneous presence of jets and leptons affect the selection / analysis? For instance: prompt jet searches veto non-standard jets. Lepton isolation will miss highly-boosted LLP decaying to e+j, μ+j? - See J.Evans's talk yesterday for more examples. ## Photonics decays - * Non-standard γ s: not coming from PV (*non-pointing*) and/or arrive late at ECAL (*delayed*). - * ATLAS all-in-one: CERN-PH-EP-2014-215. CMS: delayed CMS-PAS-EXO-012-35, non-pointing CMS-PAS-EXO-14-017. - * ATLAS triggers on two loose γ s, CMS on γ + 2j. Veto on standard γ . #### * Gaps: - 1) prompt- γ (they are vetoed!) - 2) no-MET final states $(\gamma \gamma, \gamma l, \gamma j)$ - 3) single γ - 4) ... (BYOG) ### Non-standard tracks - * The signatures that failed the "final state" categorisation attempted before is mostly due to unusual tracks appearing in the detector. - * In more detail, I will briefly go over: - Heavy Stable Charged Particles (HSCP) - Stopped Particles (SP) - Magnetic Monopoles (MM) - Quirks (Q) - Strongly Interacting Massive Particles (SIMP) - * Disappearing tracks (DT) ## Heavy Stable Charged Particles (HSCP) CMS-EXO-12-026, CMS PAS EXO-16-036, CERN-PH-EP-2014-252, CERN-EP-2016-131 - * HSCP searches @ ATLAS, CMS rely on two key properties: - * $|q| \neq e$: ionization loss (dE/dx) different than SM particles. - * Large mass -> $\beta = v/c < 1$: longer time-of-flight (TOF) to calorimeters. TOF information used optionally (partonic exchange can change q). - * Trigger on single muon or MET + offline "good track" selection. - Common benchmarks: colored (weak) HSCPs: R-hadrons (sleptons) - * LHCb: no radiation in the ring imaging Cherenkov detector (RICH). Requests two OS μ with $m(\mu\mu) > 100$ GeV, $\beta > 0.8$ (muon chamber rec.) + ANN. - No obvious weak points found. Improvements? # Stopped particles (SP) - * HSCP with very low kinetic energy gets stopped (most likely in the dense calorimeters) and decays when no collisions take place (out-of-time decays). - * Refs: CERN-PH-EP-2013-061, CMS PAS EXO-16-004, CMS PAS EXO-17-004. - * Dedicated trigger selecting crossings without nearby bunches + hard jet. ATLAS also requests |h| < 1.3 and MET > 50 GeV. - * The action happens in the muon systems, as the Stopped Particles make themselves cozy in the calorimeter. - * Main bgds: cosmic muons, beam halos (protons interacting with beampipe). - No obvious weak points found. Improvements? ### Strongly Interacting Massive Particles (SIMPs) - * Based on: Daci, de Bruyn, Lowette, Tytgat, Zaldivar, 1503.05505. - * Motivated by self-interacting DM (missing satellites, core-cusp). - * χ colored, simplified model with $q\bar{q} -> M -> \chi \chi$, $M \sim 1$ GeV. - * Signature: HCAL deposit without associated track (2 trackless jets!). Pheno similar to emerging jets. - Trick: small charged energy fraction. - Analysis underway by CMS! (see talks by S. Lowette @ April's workshop and A. de Roeck yesterday.) # Magnetic Monopoles (MM) *ATLAS [CERN-PH-EP-2015-174] looks for highly-ionising particles (HIPs). HIPs encompass a variety of BSM scenarios: magnetic monopoles, stable microscopic black holes, dyons, etc. Focus on MM for the sake of the argument, results are recastable. - * Magnetic charge quantized in units of $g_D \approx 68.5$. - *Behaves as a particle with q/e = n 68.5, ionisation power 4700 n^2 times the electron. - *HUGE coupling constant, forbids any reasonable/possible perturbative calculation beyond LO. # Quirks (Q) - * Quirks are particles charged under both SM and a new confining gauge group SU(N), such that the quirk masses are above the confinement scale Λ (no hadronization). - * Quirk-antiquirk pair can form a bound state while being separated by a distance *l* (string scale). This generates a tension in the pair, leading to a trajectory different from the SM helix. - Contrary to popular lore, quirks are not HV exclusive! - Only existing search... D0! (FERMILAB-PUB-10-324-E) - * No spoilers! Details in the forthcoming talks by M. Farina and S. Knapen M. Farina and M. Low [arXiv:1703.00912]. S. Knapen, H. K. Lou, M. Papucci, and J. Setford [arXiv:1708.02243] ``` 15:30 -> 17:20 Experimental coverage -- Part 2 Quirks -- Part 1 Speakers: Marco Farina (Sezione di Pisa (IT)), Marco Farina (Cornell University) Quirks -- Part 2 Speaker: Simon Knapen (Lawrence Berkeley National Lab) ``` # Disappearing track (DT) - * Charged particle decays into neutral particle plus a soft charged one (e.g: $X^+->X^0+\pi^+,\mu^+$). Track vanishes in thin air. Trigger on hard jet + MET. - * cτ: ATLAS went from 30 to 12 cm with 4th layer. CMS pixel detector upgrade? - * Wino (Higgsino) $c\tau = 55$ (6.6) mm. Scalar models have no preferred value! 19 How low can we go in cτ? Mono jet + soft-leptons: Schwaller, JZ [1312.7350], Low and L.-T. Wang,[1404.0682], Barducci, Belyaev, Bharucha, Porod, Sanz [1504.02472]. ### Conclusions - * Broad overview of existing searches presented here. - * The goal is to provide all essential information for the non-expert reader, and refer the avid one to the original publications. - Need to discriminate between intrinsic limitations and possible improvements: EXP feedback needed! - * Need to have comparisons of the EXP capabilities in a few BSM scenarios: common benchmark(s) appreciated. - * Not the whole landscape covered here: heavy neutral leptons, magnetrons, kinked tracks, fractionally(milli) charged particles, emerging jets,... - * This chapter should motivate improvements and wild ideas (stay tuned for the forthcoming lightning round) - * If you wanna join or contribute, just ping us!